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Data Types and Scope

Supported Data Types
HDL Coder™ supports the following subset of MATLAB® data types.

Types Supported Data Types Restrictions

Integer • uint8, uint16, uint32,

• int8, int16, int32

Real • double

• single

HDL code generated with
double or single data types
can be used for simulation,
but is not synthesizable.

Character char

Logical logical

Fixed point • Scaled (binary point only)
fixed-point numbers

• Custom integers (zero
binary point)

Fixed-point numbers with
slope (not equal to 1.0) and
bias (not equal to 0.0) are not
supported.

Maximum word size for
fixed-point numbers is 128
bits.

Vectors • unordered {N}

• row {1, N}

• column {N, 1}

The maximum number of
vector elements allowed is
2^32.

Before a variable is
subscripted, it must be
fully defined.
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Data Types and Scope

Types Supported Data Types Restrictions

Matrices {N, M} Matrices are supported in the
body of the design algorithm,
but are not supported as
inputs to the top-level design
function.

Do not use matrices in the
testbench.

Structures struct Structures are supported
in the body of the design
algorithm, but are not
supported as inputs to the
top-level design function.

Do not use structures in the
testbench.

Unsupported Data Types
In the current release, the following data types are not supported:

• Cell array

• Enumeration

• Inf

Scope for Variables
Global variables are not supported for HDL code generation.
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Operators

Arithmetic Operators
HDL Coder supports the arithmetic operators (and equivalent MATLAB
functions) listed in the following table.

Operation Operator
Syntax

Equivalent
Function

Restrictions

Binary addition A+B plus(A,B) Neither A nor B
can be data type
logical.

Matrix
multiplication

A*B mtimes(A,B)

Arraywise
multiplication

A.*B times(A,B) Neither A nor B
can be data type
logical.

Matrix power A^B mpower(A,B) A and B must
be scalar, and
B must be an
integer.

Arraywise power A.^B power(A,B) A and B must
be scalar, and
B must be an
integer.

Complex
transpose

A' ctranspose(A)

Matrix transpose A.' transpose(A)

Matrix concat [A B] None

Matrix index A(r c) None Before you use
a variable, you
must fully define
it.
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Operators

Relational Operators
HDL Coder supports the relational operators (and equivalent MATLAB
functions) listed in the following table.

Relation Operator Syntax Equivalent Function

Less than A<B lt(A,B)

Less than or equal to A<=B le(A,B)

Greater than or equal
to

A>=B ge(A,B)

Greater than A>B gt(A,B)

Equal A==B eq(A,B)

Not equal A~=B ne(A,B)

Logical Operators
HDL Coder supports the logical operators (and equivalent MATLAB
functions) listed in the following table.

Relation Operator
Syntax

M Function
Equivalent

Notes

Logical And A&B and(A,B)

Logical Or A|B or(A,B)

Logical Xor A xor B xor(A,B)

Logical
And (short
circuiting)

A&&B N/A Use short circuiting
logical operators within
conditionals. See also
“Control Flow Statements”
on page 1-7.
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Relation Operator
Syntax

M Function
Equivalent

Notes

Logical
Or (short
circuiting)

A||B N/A Use short circuiting
logical operators within
conditionals. See also
“Control Flow Statements”
on page 1-7.

Element
complement

~A not(A)
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Control Flow Statements

Control Flow Statements
HDL Coder supports the following control flow statements and constructs
with restrictions.

Control Flow
Statement

Restrictions

for Do not use for loops without static bounds.

Do not use the & and | operators within conditions of a
for statement. Instead, use the && and || operators.

HDL Coder does not support nonscalar expressions in
the conditions of for statements. Instead, use the all
or any functions to collapse logical vectors into scalars.

if Do not use the & and | operators within conditions of
an if statement. Instead, use the && and || operators.

HDL Coder does not support nonscalar expressions in
the conditions of if statements. Instead, use the all
or any functions to collapse logical vectors into scalars.

switch The conditional expression in a switch or case
statement must use only:

• uint8, uint16, uint32, int8, int16, or int32 data
types

• Scalar data

If multiple case statements make assignments to
the same variable, the numeric type and fimath
specification for that variable must be the same in
every case statement.

The following control flow statements are not supported:

• while

• break

• continue
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• return

• parfor

Vector Function Limitations Related to Control
Statements
Avoid using the following vector functions, as they may generate loops
containing break statements:

• isequal

• bitrevorder
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Persistent Variables
Persistent variables enable you to model registers. If you need to preserve
state between invocations of your MATLAB algorithm, use persistent
variables.

Before you use a persistent variable, you must initialize it with a statement
specifying its size and type. You can initialize a persistent variable with
either a constant value or a variable, as in the following examples:

% Initialize with a constant
persistent p;
if isempty(p)

p = fi(0,0,8,0);
end

% Initialize with a variable
initval = fi(0,0,8,0);

persistent p;
if isempty(p)

p = initval;
end

Use a logical expression that evaluates to a constant to test whether a
persistent variable has been initialized, as in the preceding examples. Using
a logical expression that evaluates to a constant ensures that the generated
HDL code for the test is executed only once, as part of the reset process.

You can initialize multiple variables within a single logical expression, as in
the following example:

% Initialize with variables
initval1 = fi(0,0,8,0);
initval2 = fi(0,0,7,0);

persistent p;
if isempty(p)

x = initval1;
y = initval2;
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end

Note If persistent variables are not initialized as described above, extra
sentinel variables can appear in the generated code. These sentinel variables
can translate to inefficient hardware.
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Persistent Array Variables
Persistent array variables enable you to model RAM.

By default, the coder optimizes the area of your design by mapping persistent
array variables to RAM. If persistent array variables are not mapped to RAM,
they map to registers. RAM mapping can therefore reduce the area of your
design in the target hardware.

To learn how persistent array variables map to RAM, see “Map Persistent
Arrays and dsp.Delay to RAM” on page 7-3.
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Complex Data Type Support

In this section...

“Declaring Complex Signals” on page 1-12

“Conversion Between Complex and Real Signals” on page 1-13

“Arithmetic Operations on Complex Numbers” on page 1-14

“Support for Vectors of Complex Numbers” on page 1-18

“Other Operations on Complex Numbers” on page 1-19

Declaring Complex Signals
The following MATLAB code declares several local complex variables. x and y
are declared by complex constant assignment; z is created using the using the
complex() function.

function [x,y,z] = fcn

% create 8 bit complex constants

x = uint8(1 + 2i);

y = uint8(3 + 4j);

z = uint8(complex(5, 6));

The following code example shows VHDL® code generated from the previous
MATLAB code.

ENTITY complex_decl IS

PORT (

clk : IN std_logic;

clk_enable : IN std_logic;

reset : IN std_logic;

x_re : OUT std_logic_vector(7 DOWNTO 0);

x_im : OUT std_logic_vector(7 DOWNTO 0);

y_re : OUT std_logic_vector(7 DOWNTO 0);

y_im : OUT std_logic_vector(7 DOWNTO 0);

z_re : OUT std_logic_vector(7 DOWNTO 0);

z_im : OUT std_logic_vector(7 DOWNTO 0));

END complex_decl;
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ARCHITECTURE fsm_SFHDL OF complex_decl IS

BEGIN

x_re <= std_logic_vector(to_unsigned(1, 8));

x_im <= std_logic_vector(to_unsigned(2, 8));

y_re <= std_logic_vector(to_unsigned(3, 8));

y_im <= std_logic_vector(to_unsigned(4, 8));

z_re <= std_logic_vector(to_unsigned(5, 8));

z_im <= std_logic_vector(to_unsigned(6, 8));

END fsm_SFHDL;

As shown in the example, complex inputs, outputs and local variables
declared in MATLAB code expand into real and imaginary signals. The
naming conventions for these derived signals are:

• Real components have the same name as the original complex signal,
suffixed with the default string '_re' (for example, x_re). To specify
a different suffix, set the Complex real part postfix option (or the
corresponding ComplexRealPostfix CLI property).

• Imaginary components have the same name as the original complex
signal, suffixed with the string '_im' (for example, x_im). To specify a
different suffix, set the Complex imaginary part postfix option (or the
corresponding ComplexImagPostfix CLI property).

A complex variable declared in MATLAB code remains complex during the
entire length of the program.

Conversion Between Complex and Real Signals
The MATLAB code provides access to the fields of a complex signal via the
real() and imag() functions, as shown in the following code.

function [Re_part, Im_part]= fcn(c)

% Output real and imaginary parts of complex input signal

Re_part = real(c);

Im_part = imag(c);
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The coder supports these constructs, accessing the corresponding real and
imaginary signal components in generated HDL code. In the following
Verilog® code example, the MATLAB complex signal variable c is flattened
into the signals c_re and c_im. Each of these signals is assigned to the output
variables Re_part and Im_part, respectively.

module Complex_To_Real_Imag (clk, clk_enable, reset, c_re, c_im, Re_part, Im_part );

input clk;

input clk_enable;

input reset;

input [3:0] c_re;

input [3:0] c_im;

output [3:0] Re_part;

output [3:0] Im_part;

// Output real and imaginary parts of complex input signal

assign Re_part = c_re;

assign Im_part = c_im;

Arithmetic Operations on Complex Numbers
When generating HDL code, the coder supports the following arithmetic
operators for complex numbers composed of base types (integer, fixed-point,
double):

• Addition (+)

• Subtraction (-)

• Multiplication (*)

The coder supports division only for the Fixed-Point Designer™ divide
function (see divide). The divide function is supported only if the base type of
both complex operands is fixed-point.

As shown in the following example, the default sum and product mode
for fixed-point objects is FullPrecsion, and the CastBeforeSum property
defaults to true.

fm = hdlfimath
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fm =

RoundMode: floor

OverflowMode: wrap

ProductMode: FullPrecision

MaxProductWordLength: 128

SumMode: FullPrecision

MaxSumWordLength: 128

CastBeforeSum: true

Given fixed-point operands, the coder follows full-precision cast before sum
semantics. Each addition or subtraction increases the result width by one bit.
Further casting is required to bring the results back to a smaller bit width.

In the following example function, two complex operands (with real and
imaginary ufix4 components) are summed, with a complex result having
real and imaginary ufix5 components. The result is then cast back to the
original bit width.

function z = fcn(x, y)

% addition of two complex numbers x,y of type 'ufix4'

% x+y will have'ufix5' type

z = x+y;

% to cast the result back to 'ufix4'

% z = fi(x + y, numerictype(x), fimath(x));

The following example shows VHDL code generated from this function.

ENTITY complex_add_entity IS

PORT (

clk : IN std_logic;

clk_enable : IN std_logic;

reset : IN std_logic;

x_re : IN std_logic_vector(3 DOWNTO 0);

x_im : IN std_logic_vector(3 DOWNTO 0);

y_re : IN std_logic_vector(3 DOWNTO 0);

y_im : IN std_logic_vector(3 DOWNTO 0);
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z_re : OUT std_logic_vector(4 DOWNTO 0);

z_im : OUT std_logic_vector(4 DOWNTO 0));

END complex_add_entity;

ARCHITECTURE fsm_SFHDL OF complex_add_entity IS

BEGIN

-- addition of two complex numbers x,y of type 'ufix4'

-- x+y will have'ufix5' type

z_re <= std_logic_vector(resize(unsigned(x_re), 5) +

resize(unsigned(y_re), 5));

z_im <= std_logic_vector(resize(unsigned(x_im), 5) +

resize(unsigned(y_im), 5));

-- to cast the result back to 'ufix4' use

-- z = fi(x + y, numerictype(x), fimath(x));

END fsm_SFHDL;

Similarly, for the product operation in FullPrecision mode, the result bit
width increases to the sum of the lengths of the individual operands. Further
casting is required to bring the results back to a smaller bit width.

The following example function shows how the product of two complex
operands (with real and imaginary ufix4 components) can be cast back to
the original bit width.

function z = fcn(x, y)

% Multiplication of two complex numbers x,y of type 'ufix4'

% x*y will have'ufix8' type

z = x * y;

% to cast the result back to 'ufix4'

% z = fi(x * y, numerictype(x), fimath(x));

The following example shows VHDL code generated from this function.

ENTITY complex_mul IS
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PORT (

clk : IN std_logic;

clk_enable : IN std_logic;

reset : IN std_logic;

x_re : IN std_logic_vector(3 DOWNTO 0);

x_im : IN std_logic_vector(3 DOWNTO 0);

y_re : IN std_logic_vector(3 DOWNTO 0);

y_im : IN std_logic_vector(3 DOWNTO 0);

z_re : OUT std_logic_vector(8 DOWNTO 0);

z_im : OUT std_logic_vector(8 DOWNTO 0));

END complex_mul;

ARCHITECTURE fsm_SFHDL OF complex_mul IS

SIGNAL pr1 : unsigned(7 DOWNTO 0);

SIGNAL pr2 : unsigned(7 DOWNTO 0);

SIGNAL pr1in : unsigned(8 DOWNTO 0);

SIGNAL pr2in : unsigned(8 DOWNTO 0);

SIGNAL pre : unsigned(8 DOWNTO 0);

SIGNAL pi1 : unsigned(7 DOWNTO 0);

SIGNAL pi2 : unsigned(7 DOWNTO 0);

SIGNAL pi1in : unsigned(8 DOWNTO 0);

SIGNAL pi2in : unsigned(8 DOWNTO 0);

SIGNAL pim : unsigned(8 DOWNTO 0);

BEGIN

-- addition of two complex numbers x,y of type 'ufix4'

-- x*y will have'ufix8' type

pr1 <= unsigned(x_re) * unsigned(y_re);

pr2 <= unsigned(x_im) * unsigned(y_im);

pr1in <= resize(pr1, 9);

pr2in <= resize(pr2, 9);

pre <= pr1in - pr2in;

pi1 <= unsigned(x_re) * unsigned(y_im);

pi2 <= unsigned(x_im) * unsigned(y_re);

pi1in <= resize(pi1, 9);

pi2in <= resize(pi2, 9);

pim <= pi1in + pi2in;

z_re <= std_logic_vector(pre);
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z_im <= std_logic_vector(pim);

-- to cast the result back to 'ufix4'

-- z = fi(x * y, numerictype(x), fimath(x));

END fsm_SFHDL;

Support for Vectors of Complex Numbers
You can generate HDL code for vectors of complex numbers. Like scalar
complex numbers, vectors of complex numbers are flattened down to vectors
of real and imaginary parts in generated HDL code.

For example in the following script t is a complex vector variable of base
type ufix4 and size [1,2].

function y = fcn(u1, u2)

t = [u1 u2];

y = t+1;

In the generated HDL code the variable t is broken down into real and
imaginary parts with the same two-element array. .

VARIABLE t_re : vector_of_unsigned4(0 TO 3);

VARIABLE t_im : vector_of_unsigned4(0 TO 3);

The real and imaginary parts of the complex number have the same vector of
type ufix4, as shown in the following code.

TYPE vector_of_unsigned4 IS ARRAY (NATURAL RANGE <>) OF unsigned(3 DOWNTO 0);

Complex vector-based operations (+,-,* etc.,) are similarly broken down to
vectors of real and imaginary parts. Operations are performed independently
on the elements of such vectors, following MATLAB semantics for vectors
of complex numbers.

In both VHDL and Verilog code generated from MATLAB code, complex vector
ports are always flattened. If complex vector variables appear on inputs
and outputs, real and imaginary vector components are further flattened to
scalars.
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In the following code, u1 and u2 are scalar complex numbers and y is a vector
of complex numbers.

function y = fcn(u1, u2)

t = [u1 u2];

y = t+1;

This generates the following port declarations in a VHDL entity definition.

ENTITY _MATLAB_Function IS

PORT (

clk : IN std_logic;

clk_enable : IN std_logic;

reset : IN std_logic;

u1_re : IN vector_of_std_logic_vector4(0 TO 1);

u1_im : IN vector_of_std_logic_vector4(0 TO 1);

u2_re : IN vector_of_std_logic_vector4(0 TO 1);

u2_im : IN vector_of_std_logic_vector4(0 TO 1);

y_re : OUT vector_of_std_logic_vector32(0 TO 3);

y_im : OUT vector_of_std_logic_vector32(0 TO 3));

END _MATLAB_Function;

Other Operations on Complex Numbers
The coder supports the following functions with complex operands:

• complex

• real

• imag

• conj

• transpose

• ctranspose

• isnumeric

• isreal

• isscalar
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The isreal function, which returns 0 for complex numbers, is particularly
useful for writing functions that behave differently based on whether the
input is a complex or real signal.

function y = fcn(u)

% output is same as input if 'u' is real

% output is conjugate of input if 'u' is complex

if isreal(u)

y = u;

else

y = conj(u);

end

For detailed information on these functions, see “Functions Supported for
Code Acceleration or C Code Generation”.
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System Objects

In this section...

“Why Use System Objects?” on page 1-21

“Predefined System Objects Supported for HDL Code Generation” on page
1-21

“User-Defined System Objects” on page 1-22

“Limitations of HDL Code Generation for System Objects” on page 1-22

“System object Examples for HDL Code Generation” on page 1-23

Why Use System Objects?
System objects provide a design advantage because:

• You can save time during design and testing by using existing System
object™ components.

• You can design and qualify custom System objects for reuse in multiple
designs.

• You can define your algorithm in a System object once, and reuse multiple
instances of it in a single MATLAB design.

This idiom cannot be used with MATLAB functions that have state. For
example, if the algorithm has state and requires the use of persistent
variables, that function cannot be instantiated multiple times in a design.
Instead, you would need to copy and rename the function for each instance.

• HDL code that you generate from System objects is modular and more
readable.

Predefined System Objects Supported for HDL Code
Generation
The coder supports the following Fixed-Point Designer System object for HDL
code generation:

• hdlram
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The coder supports the following Communications System Toolbox™ System
objects for HDL code generation:

• comm.BPSKModulator, comm.BPSKDemodulator

• comm.PSKModulator, comm.PSKDemodulator

• comm.QPSKModulator, comm.QPSKDemodulator

• comm.RectangularQAMModulator, comm.RectangularQAMDemodulator

• comm.ConvolutionalInterleaver, comm.ConvolutionalDeinterleaver

• comm.ViterbiDecoder

• comm.HDLCRCDetector, comm.HDLCRCGenerator

• comm.HDLRSDecoder, comm.HDLRSEncoder

The coder supports the following DSP System Toolbox™ System objects for
HDL code generation:

• dsp.Delay

• dsp.Maximum

• dsp.Minimum

• dsp.BiquadFilter

• dsp.HDLNCO

User-Defined System Objects
You can create user-defined System objects for HDL code generation. For an
example, see “Generate Code for User-Defined System Objects” on page 1-25.

Limitations of HDL Code Generation for System
Objects
The following limitations apply to HDL code generation for all System objects:

• step is the only method supported for HDL code generation.

• Your design can call the step method only once per System object.

• step must not be inside a loop or a conditional statement.
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• System objects must be declared persistent.

• You can use the dsp.Delay System object only in feed-forward delay
modeling.

In addition, the following restrictions apply to user-defined System objects for
HDL code generation:

• Public properties must be nontunable.

• Initial and reset values for properties must be compile-time constant.

• Child objects cannot be user-defined System objects.

• You must use fixed-point data types. Automatic fixed-point conversion
is not supported.

System object Examples for HDL Code Generation
To learn how to use System objects for HDL code generation, view the
MATLAB designs in the in the following examples:

• “HDL Code Generation from System Objects” on page 4-29

• “Model State with Persistent Variables and System Objects” on page 1-41
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Load constants from a MAT-File
You can load compile-time constants from a MAT-file with the coder.load
function in your MATLAB design.

For example, you can create a MAT-file, sinvals.mat, that contains
fixed-point values of sin by entering the following commands in MATLAB:

sinvals = sin(fi(-pi:0.1:pi, 1, 16,15));
save sinvals.mat sinvals;

You can then generate HDL code from the following MATLAB code,
which loads the constants from sinvals.mat into a persistent variable,
pConstStruct, and assigns the values to a variable that is not persistent, sv.

persistent pConstStruct;
if isempty(pConstStruct)

pConstStruct = coder.load('sinvals.mat');
end
sv = pConstStruct.sinvals;
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Generate Code for User-Defined System Objects
This example shows how to generate HDL code for a user-defined System
object.

1 In a writable folder, create a System object, CounterSysObj, which
subclasses from matlab.System. Save the code as CounterSysObj.m.

classdef CounterSysObj < matlab.System

properties (Nontunable)
Threshold = int32(1)

end
properties (Access=private)

State
Count

end
methods

function obj = CounterSysObj(varargin)
setProperties(obj,nargin,varargin{:});

end
end

methods (Access=protected)
function setupImpl(obj, ~)

% Initialize states
obj.Count = int32(0);
obj.State = int32(0);

end
function resetImpl(obj)

% Reset states
obj.Count(:) = int32(0);
obj.State(:) = int32(0);

end
function y = stepImpl(obj, u)

if obj.Threshold > u(1)
obj.Count(:) = obj.Count + u(1); % Increment count

end
y = obj.State; % Delay output
obj.State = obj.Count; % Put new value in state
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end
end

end

The stepImpl method implements the System object functionality. The
setupImpl and resetImpl methods define the initial and reset values for
the persistent variables in the System object.

2 Write a function that uses this System object and save it as myDesign.m.
This function is your DUT.

function y = myDesign(u)

persistent obj
if isempty(obj)

obj = CounterSysObj;
end

y = step(obj, u);

end

3 Write a test bench that calls the DUT function and save it as
myDesign_tb.m.

clear myDesign
for ii=1:10

y = myDesign(int32(ii));
end

4 Generate HDL code for the DUT function as you would for any other
MATLAB code, but skip fixed-point conversion.

To learn more about HDL code generation for user-defined System objects,
including design advantages and restrictions, see “System Objects” on page
1-21.
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Map Matrices to ROM
To map a matrix constant to ROM:

• Read one matrix element at a time.

• The matrix size must be greater than or equal to the RAM Mapping
Threshold value.

To learn how to set the RAM mapping threshold in Simulink, see
“RAMMappingThreshold” on page 11-79. To learn how to set the RAM
mapping threshold in MATLAB, see “How To Enable RAM Mapping” on
page 7-3.

• Read accesses to the matrix must not be within a feedback loop.

If your MATLAB code meets these requirements, the coder inserts a no-reset
register at the output of the matrix in the generated code. Many synthesis
tools infer a ROM from this code pattern.
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Fixed-Point Bitwise Functions

In this section...

“Overview” on page 1-28

“Bitwise Functions Supported for HDL Code Generation” on page 1-28

Overview
HDL Coder supports many bitwise functions that operate on fixed-point
integers of arbitrary length. For more information about these bitwise
functions, see “Bitwise Operations” in the Fixed-Point Designer
documentation.

This section describes HDL code generation support for these functions.
“Bitwise Functions Supported for HDL Code Generation” on page 1-28
summarizes the supported functions, with notes that describe considerations
specific to HDL code generation. “Bit Slicing and Bit Concatenation” on page
1-48 and “Bit Shifting and Bit Rotation” on page 1-45 provide usage examples,
with corresponding MATLAB and generated HDL code.

Bitwise Functions Supported for HDL Code Generation
The following table summarizes MATLAB bitwise functions that are supported
for HDL code generation. The Description column notes considerations that
are specific to HDL. The following conventions are used in the table:

• a,b: Denote fixed-point integer operands.

• idx: Denotes an index to a bit within an operand. Indexes can be scalar or
vector, depending on the function.

MATLAB code uses 1-based indexing conventions. In generated HDL code,
such indexes are converted to zero-based indexing conventions.

• lidx, ridx: denote indexes to the left and right boundaries delimiting bit
fields. Indexes can be scalar or vector, depending on the function.

• val: Denotes a Boolean value.
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Note Indexes, operands, and values passed as arguments bitwise functions
can be scalar or vector, depending on the function. For information on the
individual functions, see “Bitwise Operations” in the Fixed-Point Designer
documentation.

MATLAB Syntax Description See Also

bitand(a, b) Bitwise AND bitand

bitandreduce(a,
lidx, ridx)

Bitwise AND of a field of consecutive
bits within a. The field is delimited
by lidx , ridx.

Output data type: ufix1

For VHDL, generates the bitwise
AND operator operating on a set of
individual slices

For Verilog, generates the reduce
operator:

&a[lidx:ridx]

bitandreduce

bitcmp(a) Bitwise complement bitcmp

bitconcat(a, b)
bitconcat([a_vector])
bitconcat(a,
b,c,d,...)

Concatenate fixed-point operands.

Operands can be of different signs.

Output data type: ufixN, where N is
the sum of the word lengths of a and
b.

For VHDL, generates the
concatenation operator: (a &
b)

For Verilog, generates the
concatenation operator: {a ,
b}

bitconcat
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MATLAB Syntax Description See Also

bitget(a,idx) Access a bit at position idx.

For VHDL, generates the slice
operator: a(idx)

For Verilog, generates the slice
operator: a[idx]

bitget

bitor(a, b) Bitwise OR bitor

bitorreduce(a,
lidx, ridx)

Bitwise OR of a field of consecutive
bits within a. The field is delimited
by lidx and ridx.

Output data type: ufix1

For VHDL, generates the bitwise
OR operator operating on a set of
individual slices.

For Verilog, generates the reduce
operator:

|a[lidx:ridx]

bitorreduce

bitset(a, idx,
val)

Set or clear bit(s) at position idx.

If val = 0, clears the indicated bit(s).
Otherwise, sets the indicated bits.

bitset

bitreplicate(a,
n)

Concatenate bits of fi object a n
times

bitreplicate

1-30



Fixed-Point Bitwise Functions

MATLAB Syntax Description See Also

bitrol(a, idx) Rotate left.

idx must be a positive integer. The
value of idx can be greater than the
word length of a. idx is normalized
to mod(idx, wlen). wlen is the word
length of a.

For VHDL, generates the rol
operator.

For Verilog, generates the following
expression (where wl is the word
length of a:

a << idx || a >> wl - idx

bitrol

bitror(a, idx) Rotate right.

idx must be a positive integer. The
value of idx can be greater than the
word length of a. idx is normalized to
mod(idx, wlen) . wlen is the word
length of a.

For VHDL, generates the ror
operator.

For Verilog, generates the following
expression (where wl is the word
length of a:

a >> idx || a << wl - idx

bitror

bitset(a, idx,
val)

Set or clear bit(s) at position idx.

If val = 0, clears the indicated bit(s).
Otherwise, sets the indicated bits.

bitset
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MATLAB Syntax Description See Also

bitshift(a, idx) Note: For efficient HDL code
generation, use bitsll, bitsrl, or
bitsra instead of bitshift.

Shift left or right, based on the
positive or negative integer value
of‘idx.

idx must be an integer.

For positive values of idx, shift left
idx bits.

For negative values of idx, shift right
idx bits.

If idx is a variable, generated code
contains logic for both left shift and
right shift.

Result values saturate if the
overflowMode of a is set to saturate.

bitshift

bitsliceget(a,
lidx, ridx)

Access consecutive set of bits from
lidx to ridx.

Output data type: ufixN, where N =
lidx-ridix+1.

bitsliceget

bitsll(a, idx) Shift left logical.

idxmust be a scalar within the range

0 <= idx < wl

wl is the word length of a.

Overflow and rounding modes of
input operand a are ignored.

Generates sll operator in VHDL.

Generates << operator in Verilog.

bitsll
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MATLAB Syntax Description See Also

bitsra(a, idx) Shift right arithmetic.

idxmust be a scalar within the range

0 <= idx < wl

wl is the word length of a,

Overflow and rounding modes of
input operand a are ignored.

Generates sra operator in VHDL.

Generates >>> operator in Verilog.

bitsra

bitsrl(a, idx) Shift right logical.

idxmust be a scalar within the range

0 <= idx < wl

wl is the word length of a.

Overflow and rounding modes of
input operand a are ignored.

Generates srl operator in VHDL.

Generates >> operator in Verilog.

bitsrl

bitxor(a, b) Bitwise XOR bitxor
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MATLAB Syntax Description See Also

bitxorreduce(a,
lidx, ridx)

Bitwise XOR reduction.

Bitwise XOR of a field of consecutive
bits within a. The field is delimited
by lidx and ridx.

Output data type: ufix1

For VHDL, generates a set of
individual slices.

For Verilog, generates the reduce
operator:

^a[lidx:ridx]

bitxorreduce

getlsb(a) Return value of LSB. getlsb

getmsb(a) Return value of MSB. getmsb
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Fixed-Point Run-Time Library Functions
HDL code generation support for fixed-point run-time library functions
from the Fixed-Point Designer is summarized in the following table. See
“Fixed-Point Function Limitations” on page 1-39 for general limitations of
fixed-point run-time library functions for code generation.

Function Restrictions

abs Double data type not supported.

add None

all Double data type not supported.

any Double data type not supported.

bitand None

bitandreduce None

bitcmp None

bitconcat None

bitget None

bitor None

bitorreduce None

bitreplicate None

bitrol None

bitror None

bitset None

bitshift None

bitsliceget None

bitsll None

bitsra None

bitsrl None

bitxor None

bitxorreduce None

1-35



1 MATLAB® Algorithm Design

Function Restrictions

ceil None

complex None

conj None

convergent None

ctranspose None

divide • For HDL Code generation, the divisor must be a
constant and a power of two.

• Non-fi inputs must be constant; that is, their
values must be known at compile time so that
they can be cast to fi objects.

• Complex and imaginary divisors are not
supported.

• Code generation in MATLAB does not support
the syntax T.divide(a,b).

end None

eps • Supported for scalar fixed-point signals only.

• Supported for scalar, vector, and matrix, fi
single and fi double signals.

eq None

fi None

fimath None

fix None

floor None

ge None

getlsb None

getmsb None

gt None

horzcat None
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Function Restrictions

imag None

int8, int16, int32 None

iscolumn None

isempty None

isequal None

isfi None

isfimath None

isfimathlocal None

isfinite None

isinf None

isnan None

isnumeric None

isnumerictype None

isreal None

isrow None

isscalar None

issigned None

isvector None

le None

length None

logical None

lowerbound None

lsb None

lt None

max None

min None
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Function Restrictions

minus None

mpower Both inputs must be scalar, and the exponent input,
k, must be a constant integer.

mtimes None

ndims None

ne None

nearest None

numberofelements None

numerictype None

plus Inputs cannot be data type logical.

power Both inputs must be scalar, and the exponent input,
k, must be a constant integer.

range None

real None

realmax None

realmin None

reinterpretcast None

repmat None

rescale None

reshape None

round None

sfi None

sign None

size None

sqrt None

sub None

1-38



Fixed-Point Run-Time Library Functions

Function Restrictions

subsasgn Supported data types for HDL code generation are
listed in “Supported Data Types” on page 1-2

subsref Supported data types for HDL code generation are
listed in “Supported Data Types” on page 1-2

sum None

times Inputs cannot be data type logical.

transpose None

ufi None

uint8, uint16, uint32 None

uminus None

uplus Inputs cannot be data type logical.

upperbound None

vertcat None

Fixed-Point Function Limitations
In addition to function-specific limitations listed in the table, the following
general limitations apply to the use of Fixed-Point Designer functions in
generated HDL code:

• fipref and quantizer objects are not supported.

• Slope and bias scaling are not supported.

• Dot notation is only supported for getting the values of fimath and
numerictype properties. Dot notation is not supported for fi objects, and it
is not supported for setting properties.

• Word lengths greater than 128 bits are not supported.

• You cannot change the fimath or numerictype of a given variable after
that variable has been created.

• The boolean and ScaledDouble values of the DataTypeMode and DataType
properties are not supported.
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• For all SumMode property settings other than FullPrecision, the
CastBeforeSum property must be set to true.

• The numel function returns the number of elements of fi objects in the
generated code.

• General limitations of C/C++ code generated from MATLAB apply. See
“MATLAB Language Features Not Supported for C/C++ Code Generation”
for more information.
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Model State with Persistent Variables and System Objects
This example shows how to use persistent variables and System objects to
model state and delays in a MATLAB design for HDL code generation.

Introduction

Using System objects to model delay results in concise generated code.

In MATLAB, multiple calls to a function having persistent variables do not
result in multiple delays. Instead, the state in the function gets updated
multiple times.

% In order to reuse code implemented in a function with states,
% you need to duplicate functions multiple times to create multiple
% instances of the algorithm with delay.

Examine the MATLAB Code

Let us take a quick look at the implementation of the Sobel algorithm.

Examine the design to see how the delays and line buffers are modeled using:

• Persistent variables: mlhdlc_sobel

• System objects: mlhdlc_sysobj_sobel

Notice that the ’filterdelay’ function is duplicated with different function
names in ’mlhdlc_sobel’ code to instantiate multiple versions of the algorithm
in MATLAB for HDL code generation.

The delay line implementation is more complicated when done using
MATLAB persistent variables.

Now examine the simplified implementation of the same algorithm using
System objects in ’mlhdlc_sysobj_sobel’.

When used within the constraints of HDL code generation, the dsp.Delay
objects always map to registers. For persistent variables to be inferred as
registers, you have to be careful to read the variable before writing to it to
map it to a register.
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MATLAB Design

demo_files = {...
'mlhdlc_sysobj_sobel.m', ...
'mlhdlc_sysobj_sobel_tb.m', ...
'mlhdlc_sobel.m', ...
'mlhdlc_sobel_tb.m'
};

Create a New Folder and Copy Relevant Files

Execute the following lines of code to copy the necessary example files into a
temporary folder.

mlhdlc_demo_dir = fullfile(matlabroot, 'toolbox', 'hdlcoder', 'hdlcoderdemo
mlhdlc_temp_dir = [tempdir 'mlhdlc_delay_modeling'];

% create a temporary folder and copy the MATLAB files
cd(tempdir);
[~, ~, ~] = rmdir(mlhdlc_temp_dir, 's');
mkdir(mlhdlc_temp_dir);
cd(mlhdlc_temp_dir);

for ii=1:numel(demo_files)
copyfile(fullfile(mlhdlc_demo_dir, demo_files{ii}), mlhdlc_temp_dir);

end

Known Limitations

HDL Coder™ only supports the ’step’ method of the System object and does
not support ’output’ and ’update’ methods.

With support for only the step method, delays cannot be used in modeling
feedback paths. For example, the following piece of MATLAB code cannot be
supported using the dsp.Delay System object.

%#codegen
function y = accumulate(u)
persistent p;
if isempty(p)

p = 0;
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end
y = p;
p = p + u;

Create a New HDL Coder Project

To create a new project, enter the following command:

coder -hdlcoder -new mlhdlc_sobel

Next, add the file ’mlhdlc_sobel.m’ to the project as the MATLAB Function
and ’mlhdlc_sobel_tb.m’ as the MATLAB Test Bench.

You can refer to the Getting Started with MATLAB to HDL Workflow tutorial
for a more complete tutorial on creating and populating MATLAB HDL Coder
projects.

Run Fixed-Point Conversion and HDL Code Generation

Launch the Workflow Advisor and right-click the ’Code Generation’ step.
Choose the option ’Run to selected task’ to run all the steps from the beginning
through HDL code generation.

Examine the generated HDL code by clicking the hyperlinks in the Code
Generation Log window.

Now, create a new project for the system object design:

coder -hdlcoder -new mlhdlc_sysobj_sobel

Add the file ’mlhdlc_sysobj_sobel.m’ to the project as the MATLAB Function
and ’mlhdlc_sysobj_sobel_tb.m’ as the MATLAB Test Bench.

Repeat the code generation steps and examine the generated fixed-point
MATLAB and HDL code.

Additional Notes:

You can model integer delay using dsp.Delay object by setting the ’Length’
property to be greater than 1. These delay objects will be mapped to shift
registers in the generated code.
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If the optimization option ’Map persistent array varibles to RAMs’ is enabled,
delay System objects will get mapped to block RAMs under the following
conditions:

• ’InitialConditions’ property of the dsp.Delay is set to zero.

• Delay input data type is not floating-point.

• RAMSize (DelayLength * InputWordLength) is greater than or equal to the
’RAM Mapping Threshold’.

Clean up the Generated Files

Run the following commands to clean up the temporary project folder.

mlhdlc_demo_dir = fullfile(matlabroot, 'toolbox', 'hdlcoder', 'hdlcoderdemo
mlhdlc_temp_dir = [tempdir 'mlhdlc_delay_modeling'];
clear mex;
cd (mlhdlc_demo_dir);
rmdir(mlhdlc_temp_dir, 's');
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Bit Shifting and Bit Rotation
HDL Coder supports shift and rotate functions that mimic HDL-specific
operators without saturation and rounding logic.

The following code implements a barrel shifter/rotator that performs a selected
operation (based on the mode argument) on a fixed-point input operand.

function y = fcn(u, mode)
% Multi Function Barrel Shifter/Rotator

% fixed width shift operation
fixed_width = uint8(3);

switch mode
case 1

% shift left logical
y = bitsll(u, fixed_width);

case 2
% shift right logical
y = bitsrl(u, fixed_width);

case 3
% shift right arithmetic
y = bitsra(u, fixed_width);

case 4
% rotate left
y = bitrol(u, fixed_width);

case 5
% rotate right
y = bitror(u, fixed_width);

otherwise
% do nothing
y = u;

end

In VHDL code generated for this function, the shift and rotate functions map
directly to shift and rotate instructions in VHDL.

CASE mode IS
WHEN "00000001" =>
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-- shift left logical
--'<S2>:1:8'
cr := signed(u) sll 3;
y <= std_logic_vector(cr);

WHEN "00000010" =>
-- shift right logical
--'<S2>:1:11'
b_cr := signed(u) srl 3;
y <= std_logic_vector(b_cr);

WHEN "00000011" =>
-- shift right arithmetic
--'<S2>:1:14'
c_cr := SHIFT_RIGHT(signed(u) , 3);
y <= std_logic_vector(c_cr);

WHEN "00000100" =>
-- rotate left
--'<S2>:1:17'
d_cr := signed(u) rol 3;
y <= std_logic_vector(d_cr);

WHEN "00000101" =>
-- rotate right
--'<S2>:1:20'
e_cr := signed(u) ror 3;
y <= std_logic_vector(e_cr);

WHEN OTHERS =>
-- do nothing
--'<S2>:1:23'
y <= u;

END CASE;

The corresponding Verilog code is similar, except that Verilog does not have
native operators for rotate instructions.

case ( mode)
1 :

begin
// shift left logical
//'<S2>:1:8'
cr = u <<< 3;
y = cr;
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end
2 :

begin
// shift right logical
//'<S2>:1:11'
b_cr = u >> 3;
y = b_cr;

end
3 :

begin
// shift right arithmetic
//'<S2>:1:14'
c_cr = u >>> 3;
y = c_cr;

end
4 :

begin
// rotate left
//'<S2>:1:17'
d_cr = {u[12:0], u[15:13]};
y = d_cr;

end
5 :

begin
// rotate right
//'<S2>:1:20'
e_cr = {u[2:0], u[15:3]};
y = e_cr;

end
default :

begin
// do nothing
//'<S2>:1:23'
y = u;

end
endcase

1-47



1 MATLAB® Algorithm Design

Bit Slicing and Bit Concatenation
This section describes how to use the functions bitsliceget and bitconcat
to access and manipulate bit slices (fields) in a fixed-point or integer word.
As an example, consider the operation of swapping the upper and lower 4-bit
nibbles of an 8-bit byte. The following example accomplishes this task without
resorting to traditional mask-and-shift techniques.

function y = fcn(u)
% NIBBLE SWAP
y = bitconcat(

bitsliceget(u, 4, 1),
bitsliceget(u, 8, 5));

The bitsliceget and bitconcat functions map directly to slice and concat
operators in both VHDL and Verilog.

The following listing shows the corresponding generated VHDL code.

ENTITY fcn IS
PORT (

clk : IN std_logic;
clk_enable : IN std_logic;
reset : IN std_logic;
u : IN std_logic_vector(7 DOWNTO 0);
y : OUT std_logic_vector(7 DOWNTO 0));

END nibble_swap_7b;

ARCHITECTURE fsm_SFHDL OF fcn IS

BEGIN
-- NIBBLE SWAP
y <= u(3 DOWNTO 0) & u(7 DOWNTO 4);

END fsm_SFHDL;

The following listing shows the corresponding generated Verilog code.
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module fcn (clk, clk_enable, reset, u, y );
input clk;
input clk_enable;
input reset;
input [7:0] u;
output [7:0] y;

// NIBBLE SWAP
assign y = {u[3:0], u[7:4]};

endmodule
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Guidelines for Efficient HDL Code
When you generate HDL code from your MATLAB design, you are converting
an algorithm into an architecture that must meet hardware area and speed
requirements.

For better HDL code and faster code generation, design your MATLAB code
according to the following best practices:

• Serialize your input and output data. Parallel data processing structures
require more hardware resources and a higher pin count.

• Use add and subtract algorithms instead of algorithms that use functions
like sin, divide, and modulo. Add and subtract operations use fewer
hardware resources.

• Avoid large arrays and matrices. Large arrays and matrices require more
registers and RAM for storage.

• Convert your code from floating-point to fixed-point. Floating-point data
types are inefficient for hardware realization. The coder provides an
automated workflow for floating-point to fixed-point conversion.

• Unroll loops. Unroll loops to increase speed at the cost of higher area;
unroll fewer loops and enable the loop streaming optimization to conserve
area at the cost of lower throughput.
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MATLAB Design Requirements for HDL Code Generation
Your MATLAB design has the following requirements:

• MATLAB code within the design must be supported for HDL code
generation.

• Inputs and outputs must not be matrices or structures.

If you are generating code from the command line, verify your code readiness
for code generation with the following command:

coder.screener(`design_function_name')

If you use the HDL Workflow Advisor to generate code, this check runs
automatically.

For a MATLAB language support reference, including supported functions
from the Fixed-Point Designer, see “MATLAB Algorithm Design”.
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What Is a MATLAB Test Bench?
A test bench is a MATLAB script or function that you write to test the
algorithm in your MATLAB design function. The test bench varies the input
data to the design to simulate real world conditions. It can also can check that
the output data meets design specifications.

The coder uses the data it gathers from running your test bench with
your design to infer fixed-point data types for floating-point to fixed-point
conversion. The coder also uses the data to generate HDL test data for
verifying your generated code. For more information on how to write your
test bench for the best results, see “MATLAB Test Bench Requirements and
Best Practices” on page 1-53.
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MATLAB Test Bench Requirements and Best Practices

MATLAB Test Bench Requirements
You can use any MATLAB data type and function in your test bench.

A MATLAB test bench has the following requirements:

• For floating-point to fixed-point conversion, the test bench must be a script
or a function with no inputs.

• The inputs and outputs in your MATLAB design interface must use the
same data types, sizes, and complexity in each call site in your test bench.

• If you enable the Accelerate test bench for faster simulation option in
the Float-to-Fixed Workflow, the MATLAB constructs in your test bench
loop must be compilable.

MATLAB Test Bench Best Practices
Use the following MATLAB test bench best practices:

• Design your test bench to cover the full numeric range of data that the
design must handle. The coder uses the data that it accumulates from
running the test bench to infer fixed-point data types during floating-point
to fixed-point conversion.

If you call the design function multiple times from your test bench, the
coder uses the accumulated data from each instance to infer fixed-point
types. Both the design and the test bench can call local functions within the
file or other functions on the MATLAB path. The call to the design function
can be at any level of your test bench hierarchy.

• Before trying to generate code, run your test bench in MATLAB . If
simulation is slow, accelerate your test bench. To learn how to accelerate
your simulation, see “Accelerate MATLAB Algorithms”.

• If you have a loop that calls your design function, use only compilable
MATLAB constructs within the loop and enable the Accelerate test
bench for faster simulation option.

• Before each test bench simulation run, use the clear variables command
to reset your persistent variables.
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To see an example of a test bench, enter this command:

showdemo mlhdlc_tutorial_float2fixed_files
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Model a Counter for HDL Code Generation

In this section...

“MATLAB Counter” on page 2-2

“MATLAB Code for the Counter ” on page 2-3

“Best Practices in this Example” on page 2-4

MATLAB Counter
This design pattern shows a MATLAB example of a counter, which is suitable
for HDL code generation.

This model demonstrates the following best practices for writing MATLAB
code to generate HDL code:

• Initialize persistent variables.

• Read persistent variables before they are modified.

The schematic below shows the counter modeled in this example.
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MATLAB Code for the Counter
The function mlhdlc_counter is a behavioral model of a four bit synchronous
up counter. The input signal, enable_ctr, triggers the value of the count
register, count_val, to increase by one. The counter continues to increase
by one each time the input is nonzero, until the count reaches a limit of 15.
After the counter reaches this limit, the counter returns to zero. A persistent
variable, which is initialized to zero, represents the current value of the count.
Two if statements determine the value of the count based on the input.
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The following section of code defines the mldhlc_counter function.

%#codegen
function count = mlhdlc_counter(enable_ctr)
%four bit synchronous up counter

%persistent variable for the state
persistent count_val;
if isempty(count_val)

count_val = 0;
end

%counting up
if enable_ctr

count_val=count_val+1;

%limit to four bits
if count_val>15

count_val=0;
end

end

count=count_val;

end

Best Practices in this Example
This design pattern demonstrates two best practices for writing MATLAB
code for HDL code generation:

• Initialize persistent variables to a specific value. In this example, an if
statement and the isempty function initialize the persistent variable.
If the persistent variable is not initialized then HDL code cannot be
generated.

• Inside a function, read persistent variables before they are modified, in
order for the persistent variables to be inferred as registers.
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Model a State Machine for HDL Code Generation

In this section...

“MATLAB State Machines” on page 2-5

“MATLAB Code for the Mealy State Machine” on page 2-5

“MATLAB Code for the Moore State Machine” on page 2-7

“Best Practices” on page 2-9

MATLAB State Machines
The following design pattern shows MATLAB examples of Mealy and Moore
state machines which are suitable for HDL code generation.

The MATLAB code in these models demonstrates best practices for writing
MATLAB models for HDL code generation.

• With a switch block, use the otherwise statement to account for all
conditions.

• Use variables to designate states in a state machine.

In a Mealy state machine, the output depends on the state and the input. In a
Moore state machine, the output depends only on the state.

MATLAB Code for the Mealy State Machine
The following MATLAB code defines the mlhdlc_fsm_mealy function. A
persistent variable represents the current state. A switch block uses the
current state and input to determine the output and new state. In each case in
the switch block, an if-else statement calculates the new state and output.

%#codegen
function Z = mlhdlc_fsm_mealy(A)
% Mealy State Machine

% y = f(x,u) :
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% all actions are condition actions and
% outputs are function of state and input

% define states
S1 = 0;
S2 = 1;
S3 = 2;
S4 = 3;

persistent current_state;
if isempty(current_state)

current_state = S1;
end

% switch to new state based on the value state register
switch (current_state)

case S1,

% value of output 'Z' depends both on state and inputs
if (A)

Z = true;
current_state = S1;

else
Z = false;
current_state = S2;

end

case S2,

if (A)
Z = false;
current_state = S1;

else
Z = true;
current_state = S2;

end

case S3,
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if (A)
Z = false;
current_state = S2;

else
Z = true;
current_state = S3;

end

case S4,

if (A)
Z = true;
current_state = S1;

else
Z = false;
current_state = S3;

end

otherwise,

Z = false;
end

MATLAB Code for the Moore State Machine
The following MATLAB code defines the mlhdlc_fsm_moore function. A
persistent variable represents the current state, and a switch block uses the
current state to determine the output and new state. In each case in the
switch block, an if-else statement calculates the new state and output. The
value of the state is represented by numerical variables.

%#codegen
function Z = mlhdlc_fsm_moore(A)
% Moore State Machine

% y = f(x) :
% all actions are state actions and
% outputs are pure functions of state only

% define states
S1 = 0;
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S2 = 1;
S3 = 2;
S4 = 3;

% using persistent keyword to model state registers in hardware
persistent curr_state;
if isempty(curr_state)

curr_state = S1;
end

% switch to new state based on the value state register
switch (curr_state)

case S1,

% value of output 'Z' depends only on state and not on inputs
Z = true;

% decide next state value based on inputs
if (~A)

curr_state = S1;
else

curr_state = S2;
end

case S2,

Z = false;

if (~A)
curr_state = S1;

else
curr_state = S2;

end

case S3,

Z = false;
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if (~A)
curr_state = S2;

else
curr_state = S3;

end

case S4,

Z = true;
if (~A)

curr_state = S1;
else

curr_state = S3;
end

otherwise,
Z = false;

end

Best Practices

This design pattern demonstrates two best practices for writing MATLAB
code for HDL code generation.

• With a switch block, use the otherwise statement to ensure that the
model accounts for all conditions. If the model does not cover all conditions,
the generated HDL code can contain errors.

• To designate the states in a state machine, use variables with numerical
values.
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Generate Hardware Instances For Local Functions

In this section...

“MATLAB Local Functions” on page 2-10

“MATLAB Code for mlhdlc_two_counters.m” on page 2-10

MATLAB Local Functions
The following example shows how to use local functions in MATLAB, so
that each execution of a local function corresponds to a separate hardware
module in the generated HDL code. This example demonstrates best practices
for writing local functions in MATLAB code that is suitable for HDL code
generation.

• If your MATLAB code executes a local function multiple times, the
generated HDL code does not necessarily instantiate multiple hardware
modules. Rather than instantiating multiple hardware modules, multiple
calls to a function typically update the state variable.

• If you want the generated HDL code to contain multiple hardware modules
corresponding to each execution of a local function, specify two different
local functions with the same code but different function names. If you want
to avoid code duplication, consider using System objects to implement the
behavior in the function, and instantiate the System object multiple times.

• If you want to specify a separate HDL file for each local function in the
MATLAB code, in the Workflow Advisor, on the Advanced tab in the
HDL Code Generation section, select Generate instantiable code for
functions .

MATLAB Code for mlhdlc_two_counters.m
This function creates two counters and adds the output of these counters. To
create two counters, there are two local functions with identical code, counter
and counter2. The main method calls each of these local functions once.
If the function were to call the counter function twice, separate hardware
modules for the counters would not be generated in the HDL code.

%#codegen
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function total_count = mlhdlc_two_counters(a,b)

%This function contains a two different local functions with identical
%counters and calls each counter once.

total_count1=counter(a);

total_count2=counter2(b);

total_count=total_count1+total_count2;

function count = counter(enable_ctr)
%four bit synchronous up counter

%persistent variable for the state
persistent count_val;
if isempty(count_val)

count_val = 0;
end

%counting up
if enable_ctr

count_val=count_val+1;
end

%limit from four bits
if count_val>15

count_val=0;
end

count=count_val;

function count = counter2(enable_ctr)
%four bit synchronous up counter

%persistent variable for the state
persistent count_val;
if isempty(count_val)

2-11



2 MATLAB Best Practices and Design Patterns for HDL Code Generation

count_val = 0;
end

%counting up
if enable_ctr

count_val=count_val+1;
end

%limit from four bits
if count_val>15

count_val=0;
end

count=count_val;
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Implement RAM Using MATLAB Code

In this section...

“Implementation of RAM” on page 2-13

“Implement RAM Using a Persistent Array” on page 2-13

“Implement RAM Using hdlram ” on page 2-14

Implementation of RAM
These examples demonstrate two methods of writing MATLAB code mapped
to RAM during HDL code generation: persistent arrays and hdlram System
objects. The examples model the same line delay in MATLAB. However, one
example uses the a persistent array and the other uses anhdlram System
object to model the RAM behavior. This line delay uses memory in a ring
structure. Data is written in one position and read from another position in
such a way that the data written is read after a specific number of cycles.
To parameterize the delay length, the RAM write address is generated by a
counter. The read address is generated by adding a constant value to the
write address.

For a comparison of the ways you can write MATLAB code to map to RAM
during HDL code generation, and for an overview of the trade-offs, see: “RAM
Mapping Comparison for MATLAB Code” on page 7-9. For information on
mapping persistent arrays and dsp.Delay System objects to RAM, see: “Map
Persistent Arrays and dsp.Delay to RAM” on page 7-3.

Implement RAM Using a Persistent Array
This example shows a line delay that implements the RAM behavior using a
persistent array with the function mlhdlc_hdlram_persistent. Changing
a specific value in the persistent array is equivalent to writing to the RAM.
Accessing a specific value in the array is equivalent to reading from the RAM.

%#codegen
function data_out = mlhdlc_hdlram_persistent(data_in)

persistent hRam;
if isempty(hRam)

2-13



2 MATLAB Best Practices and Design Patterns for HDL Code Generation

hRam = zeros(128,1);
end

% read address counter
persistent rdAddrCtr;
if isempty(rdAddrCtr)

rdAddrCtr = 1;
end

% ring counter length
ringCtrLength = 10;
ramWriteAddr = rdAddrCtr + ringCtrLength;

ramWriteData = data_in;
%ramWriteEnable = true;

ramReadAddr = rdAddrCtr;

% execute single step of RAM

hRam(ramWriteAddr)=ramWriteData;
ramRdDout=hRam(ramReadAddr);

rdAddrCtr = rdAddrCtr + 1;

data_out = ramRdDout;

Implement RAM Using hdlram
This example shows a line delay that implements the RAM behavior using
hdlram with the function, mlhdlc_hdlram_sysobj. In this function, the step
method of the hdlram System object reads and writes to specific locations
in hRam.

%#codegen
function data_out = mlhdlc_hdlram_sysobj(data_in)
persistent hRam;
if isempty(hRam)

hRam = hdlram('RAMType', 'Dual port');
end

2-14



Implement RAM Using MATLAB Code

% read address counter
persistent rdAddrCtr;
if isempty(rdAddrCtr)

rdAddrCtr = 0;
end

% ring counter length
ringCtrLength = 10;
ramWriteAddr = rdAddrCtr + ringCtrLength;

ramWriteData = data_in;
ramWriteEnable = true;

ramReadAddr = rdAddrCtr;

% execute single step of RAM
[~, ramRdDout] = step(hRam, ramWriteData, ramWriteAddr, ramWriteEnable, ram

rdAddrCtr = rdAddrCtr + 1;

data_out = ramRdDout;

hdlram Restrictions for Code Generation
Code generation from hdlram has the same restrictions as code generation
from other System objects. For details, see “Limitations of HDL Code
Generation for System Objects” on page 1-22.
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2 MATLAB Best Practices and Design Patterns for HDL Code Generation

For-Loop Best Practices for HDL Code Generation

In this section...

“MATLAB Loops” on page 2-16

“Monotonically Increasing Loop Counters” on page 2-16

“Persistent Variables in Loops” on page 2-17

“Persistent Arrays in Loops” on page 2-18

MATLAB Loops
Some best practices for using loops in MATLAB code for HDL code generation
are:

• Use monotonically increasing loop counters, with increments of 1, to
minimize the amount of hardware generated in the HDL code.

• If you want to use the loop streaming optimization:

- When assigning new values to persistent variables inside a loop, do
not use other persistent variables on the right side of the assignment.
Instead, use an intermediate variable.

- If a loop modifies any elements in a persistent array, the loop should
modify all of the elements in the persistent array.

Monotonically Increasing Loop Counters
By using monotonically increasing loop counters with increments of 1, you can
reduce the amount of hardware in the generated HDL code. The following loop
is an example of a monotonically increasing loop counter with increments of 1.

a=1;
for i=1:10

a=a+1;
end

If a loop counter increases by an increment other than 1, the generated HDL
code can require additional adders. Due to this additional hardware, do not
use the following type of loop.
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a=1;
for i=1:2:10

a=a+1;
end

If a loop counter decreases, the generated HDL code can require additional
adders. Due to this additional hardware, do not use the following type of loop.

a=1;
for i=10:-1:1

a=a+1;
end

Persistent Variables in Loops
If a loop contains multiple persistent variables, when you assign values to
persistent variables, use intermediate variables that are not persistent on the
right side of the assignment. This practice makes dependencies clear to the
compiler and assists internal optimizations during the HDL code generation
process. If you want to use the loop streaming optimization to reduce the
amount of generated hardware, this practice is recommended.

In the following example, var1 and var2 are persistent variables. var1 is
used on the right side of the assignment. Because a persistent variable is on
the right side of an assignment, do not use this type of loop:

for i=1:10
var1 = 1 + i;
var2 = var1 * 2;

end

Instead of using var1 on the right side of the assignment, use an intermediate
variable that is not persistent. This example demonstrates this with the
intermediate variable var_intermediate.

for i=1:10
var_intermediate = 1 + i;
var1 = var_intermediate;
var2 = var_intermediate * 2;

end
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Persistent Arrays in Loops
If a loop modifies elements in a persistent array, make sure that the loop
modifies all of the elements in the persistent array. If all elements of the
persistent array are not modified within the loop, the coder cannot perform
the loop streaming optimization.

In the following example, a is a persistent array. The first element is modified
outside of the loop. Do not use this type of loop.

for i=2:10
a(i)=1+i;

end
a(1)=24;

Rather than modifying the first element outside the loop, modify all of the
elements inside the loop.

for i=1:10
if i==1

a(i)=24;
else

a(i)=1+i;
end

end
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3 Fixed-Point Conversion

Floating-Point to Fixed-Point Conversion
This example shows how to start with a floating-point design in MATLAB,
iteratively converge on an efficient fixed-point design in MATLAB, and verify
the numerical accuracy of the generated fixed-point design.

Signal processing applications for reconfigurable platforms require algorithms
that are typically specified using floating-point operations. However, for
power, cost, and performance reasons, they are usually implemented with
fixed-point operations either in software for DSP cores or as special-purpose
hardware in FPGAs. Fixed-point conversion can be very challenging and
time-consuming, typically demanding 25 to 50 percent of the total design
and implementation time. Automated tools can simplify and accelerate the
conversion process.

For software implementations, the aim is to define an optimized fixed-point
specification which minimizes the code size and the execution time for a given
computation accuracy constraint. This optimization is achieved through the
modification of the binary point location (for scaling) and the selection of
the data word length according to the different data types supported by the
target processor.

For hardware implementations, the complete architecture can be optimized.
An efficient implementation will minimize both the area used and the power
consumption. Thus, the conversion process goal typically is focused around
minimizing the operator word length.

The floating-point to fixed-point workflow is currently integrated in the HDL
Workflow Advisor that you have been introduced to in the tutorial Getting
Started with MATLAB to HDL Workflow.

Introduction

The floating-point to fixed-point conversion workflow in HDL Coder™
includes the following steps:

1 Verify that the floating-point design is compatible with code generation.

2 Compute fixed-point types based on the simulation of the testbench.
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3 Generate readable and traceable fixed-point MATLAB code by applying
proposed types.

4 Verify the generated fixed-point design.

5 Compare the numerical accuracy of the generated fixed-point code with the
original floating point code.

MATLAB Design

The MATLAB code used in this example is a simple second-order direct-form
2 transposed filter. This example also contains a MATLAB testbench that
exercises the filter.

design_name = 'mlhdlc_df2t_filter.m';
testbench_name = 'mlhdlc_df2t_filter_tb.m';

Examine the MATLAB design.

type(design_name);

%#codegen
function y = mlhdlc_df2t_filter(x)

persistent z;
if isempty(z)

% Filter states as a column vector
z = zeros(2,1);

end

% Filter coefficients as constants
b = [0.29290771484375 0.585784912109375 0.292907714843750];
a = [1.0 0.0 0.171600341796875];

y = b(1)*x + z(1);
z(1) = (b(2)*x + z(2)) - a(2) * y;
z(2) = b(3)*x - a(3) * y;

end
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3 Fixed-Point Conversion

For the floating-point to fixed-point workflow, it is desirable to have a
complete testbench. The quality of the proposed fixed-point data types
depends on how well the testbench covers the dynamic range of the design
with the desired accuracy.

For more details on the requirements for the floating-point design and the
testbench, refer to the ’Floating-Point Design Structure’ structure section of
the Working with Generated Fixed-Point Files tutorial.

type(testbench_name);

Fs = 256; % Sampling frequency
Ts = 1/Fs; % Sample time
t = 0:Ts:1-Ts; % Time vector from 0 to 1 second
f1 = Fs/2; % Target frequency of chirp set to Nyquist
in = sin(pi*f1*t.^2); % Linear chirp from 0 to Fs/2 Hz in 1 second
out = zeros(size(in)); % Output the same size as the input

for ii=1:length(in)
out(ii) = mlhdlc_df2t_filter(in(ii));

end

% Plot
figure('Name', [mfilename, '_plot']);
subplot(2,1,1);
plot(in);
xlabel('Time')
ylabel('Amplitude')
title('Input Signal (with Noise)')

subplot(2,1,2);
plot(out);
xlabel('Time')
ylabel('Amplitude')
title('Output Signal (filtered)')

Create a New Folder and Copy Relevant Files
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Execute the following lines of code to copy the necessary example files into a
temporary folder.

mlhdlc_demo_dir = fullfile(matlabroot, 'toolbox', 'hdlcoder', 'hdlcoderdemo
mlhdlc_temp_dir = [tempdir 'mlhdlc_flt2fix_prj'];

% create a temporary folder and copy the MATLAB files
cd(tempdir);
[~, ~, ~] = rmdir(mlhdlc_temp_dir, 's');
mkdir(mlhdlc_temp_dir);
cd(mlhdlc_temp_dir);

copyfile(fullfile(mlhdlc_demo_dir, design_name), mlhdlc_temp_dir);
copyfile(fullfile(mlhdlc_demo_dir, testbench_name), mlhdlc_temp_dir);

Simulate the Design

Simulate the design with the test bench prior to code generation to make sure
there are no runtime errors.

mlhdlc_df2t_filter_tb
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Create a New HDL Coder Project

To create a new project, enter the following command:

coder -hdlcoder -new flt2fix_project

Next, add the file ’mlhdlc_filter.m’ to the project as the MATLAB Function
and ’mlhdlc_filter_tb.m’ as the MATLAB Test Bench.
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You can refer to Getting Started with MATLAB to HDL Workflow tutorial for
a more complete tutorial on creating and populating MATLAB HDL Coder
projects.

Fixed-Point Code Generation Workflow

The floating-point to fixed-point conversion workflow allows you to:

• Verify that the floating-point design is code generation compliant

• Propose fixed-point types based on simulation data and word length
settings

• Allow the user to manually adjust the proposed fixed-point types

• Validate the proposed fixed-point types

• Verify that the generated fixed-point MATLAB code has the desired
numeric accuracy

Step 1: Launch Workflow Advisor

1 Click on the Workflow Advisor button to launch the HDLWorkflow Advisor.

2 Choose ’Convert to fixed-point at build time’ for the option ’Fixed-point
conversion’.
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3 Fixed-Point Conversion

Step 2: Define Input Types

In this step you can define input types manually or by specifying and running
the testbench.

1 Click ’Run’ to execute this step.

After simulation notice that the input variable ’x’ is defined as scalar double
’double(1x1)’

Step 3: Run Simulation
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1 Click on the ’Fixed-Point Conversion’ step.

The design is compiled with the input types defined in the previous step and
after the compilation is successful the variable table shows inferred types
for all the functions in the design.

In this step, the original design is instrumented so that the minimum
and maximum values for all variables in the design are collected during
simulation.

1 Click the ’Run Simulation’ step.
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3 Fixed-Point Conversion

Notice that the ’Sim Min’ and ’Sim Max’ table is now populated with
simulation ranges. Based on default wordlength settings fixed-point types
are proposed.

At this stage, based on computed simulation ranges for all variables, you
can compute:

• Fraction lengths for a given fixed word length setting, or

• Word lengths for a given fixed fraction length setting.
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The type table contains the following information for each variable existing in
the floating-point MATLAB design, organized by function:

• Sim Min: The minimum value assigned to the variable during simulation.

• Sim Max: The maximum value assigned to the variable during simulation.

• Whole Number: Whether all values assigned during simulation are
integers.

The type proposal step uses the above information and combines it with the
user-specified word length settings to propose a fixed-point type for each
variable.

You can also enable the ’Log histogram data’ option under ’Run simulation’
button to enable logging of histogram data.

3-11



3 Fixed-Point Conversion

The histogram view concisely gives information about dynamic range of the
simulation data for a variable. The x-axis correspond to bit weights and y-axis
represents number of occurances. The proposed numeric type information is
overlaid on top of this graph and is editable. Moving the bounding white box
left or right changes the position of binary point. Moving the right or left
edges correspondingly change fraction length or wordlength. All the changes
made to the proposed type are saved in the project.

Step 3: Validate types

In this step, the fixed-point types from the previous step are used to generate a
fixed-point MATLAB design from the original floating-point implementation.

1 Click on the ’Validate Types’ button.
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The generated code and other conversion artifacts are available via hyperlinks
in the output window. The fixed-point types are explicitly shown in the
generated MATLAB code.
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Step 4: Test Numerics

1 Click on the ’Test Numerics’ step.

In this step, the generated fixed-point code is executed using MATLAB Coder.

If you enable the ’Log all inputs and outputs for comparison plots’ option on
the ’Test Numerics’ pane, an additional plot is generated for each scalar output
that shows the floating point and fixed point results, as well as the difference
between the two. For non-scalar outputs, only the error information is shown.

3-15



3 Fixed-Point Conversion

Step 5: Iterate on the Results

If the numerical results do not meet your desired accuracy after fixed-point
simulation, you can return to the ’Propose Fixed-Point Types’ step in the
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Workflow Advisor. Adjust the word length settings or individually modify
types as desired, and repeat the rest of the steps in the workflow until you
achieve your desired results.

You can refer to the Fixed-Point Type Conversion and Refinement example
for more details on how to iterate and refine the numerics of the algorithm in
the generated fixed-point code.

Clean up the Generated Files

Run the following commands to clean up the temporary project folder.

mlhdlc_demo_dir = fullfile(matlabroot, 'toolbox', 'hdlcoder', 'hdlcoderdemo
mlhdlc_temp_dir = [tempdir 'mlhdlc_flt2fix_prj'];
clear mex;
cd (mlhdlc_demo_dir);
rmdir(mlhdlc_temp_dir, 's');
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Fixed-Point Type Conversion and Refinement
This example shows how to achieve your desired numerical accuracy when
converting fixed-point MATLAB code to floating-point code using the HDL
Workflow Advisor.

Introduction

The floating-point to fixed-point conversion workflow in HDL Coder™
includes the following steps:

1 Verify the floating-point design is compatible for code generation.

2 Compute fixed-point types based on the simulation of the testbench.

3 Generate readable and traceable fixed-point MATLAB code.

4 Verify the generated fixed-point design.

This tutorial uses a Kalman filter suitable for C code generation to illustrate
some key aspects of fixed-point conversion workflow, specifically steps 2 and 3
in the above list.

MATLAB Design

The MATLAB code used in this example implements a simple Kalman filter.
This example also contains a MATLAB testbench that exercises the filter.

design_name = 'mlhdlc_kalman_c.m';
testbench_name = 'mlhdlc_kalman_c_tb.m';

1 MATLAB Design: mlhdlc_kalman_c

2 MATLAB testbench: mlhdlc_kalman_c_tb

Create a New Folder and Copy Relevant Files

Execute the following lines of code to copy the necessary example files into a
temporary folder.

mlhdlc_demo_dir = fullfile(matlabroot, 'toolbox', 'hdlcoder', 'hdlcoderdemo
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mlhdlc_temp_dir = [tempdir 'mlhdlc_flt2fix'];

% create a temporary folder and copy the MATLAB files
cd(tempdir);
[~, ~, ~] = rmdir(mlhdlc_temp_dir, 's');
mkdir(mlhdlc_temp_dir);
cd(mlhdlc_temp_dir);

copyfile(fullfile(mlhdlc_demo_dir, design_name), mlhdlc_temp_dir);
copyfile(fullfile(mlhdlc_demo_dir, testbench_name), mlhdlc_temp_dir);

Simulate the Design

Simulate the design with the testbench prior to code generation to make sure
there are no runtime errors.

mlhdlc_kalman_c_tb

Running --------> mlhdlc_kalman_c_tb

Current plot held
Current plot released
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Create a New HDL Coder Project

To create a new project, enter the following command:

coder -hdlcoder -new flt2fix_project

Next, add the file ’mlhdlc_kalman_c.m’ to the project as the MATLAB
Function and ’mlhdlc_kalman_c_tb.m’ as the MATLAB Test Bench.

You can refer to Getting Started with MATLAB to HDL Workflow tutorial for
a more complete tutorial on creating and populating HDL Coder projects.
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Fixed-Point Code Generation Workflow

Perform the following tasks before moving on to the fixed-point type proposal
step:

1 Click the ’Workflow Advisor’ button to launch the HDL Workflow Advisor.

2 Choose ’Convert to fixed-point at build time’ for the ’Fixed-point conversion’
option.

3 Click ’Run’ button to define input types for the design from the testbench.

4 Select the ’Fixed-Point Conversion’ workflow step.

5 Click ’Run Simulation’ to execute the instrumented floating-point
simulation.

Refer to Floating-Point to Fixed-Point Conversion for a more complete tutorial
on these steps.

Determine the Initial Fixed Point Types

After instrumented floating-point simulation completes, you will see
’Fixed-Point Types are proposed’ based on the simulation results.

At this stage of the conversion proposes fixed-point types for each variable
in the design based on the recorded min/max values of the floating point
variables and user input.

At this point, for all variables, you can (re)compute and propose:

• Fraction lengths for a given fixed word length setting, or

• Word lengths for a given fixed fraction length setting.

Choose the Word Length Setting

When you are starting with a floating-point design and going through the
floating-point to fixed-point conversion for the first time, it is a good practice
to start by specifying a ’Default Word Length’ setting based on the largest
dynamic range of all the variables in the design.
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In this example, we start with a default word length of 14 and run the
’Propose Fixed-Point Types’ step.

Explore the Proposed Fixed-Point Type Table

The type table contains the following information for each variable, organized
by function, existing in the floating-point MATLAB design:
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• Sim Min: The minimum value assigned to the variable during simulation.

• Sim Max: The maximum value assigned to the variable during simulation.

• Whole Number: Whether all values assigned during simulation are integer.

The type proposal step uses the above information and combines it with the
user-specified word length settings to propose a fixed-point type for each
variable.

You can also use ’Compute Derived Range Analysis’ to compute derived
ranges and that is covered in detail in this tutorial Computing Derived
Ranges in fixed-point conversion

Interpret the Proposed Numeric Types for Variables

Based on the simulation range (min & max) values and the default word
length setting, a numeric type is proposed for each variable.

The following table shows numeric type proposals for a ’Default word length’
of 14 bits.
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Examine the types proposed in the above table for variables instrumented in
the top-level design.

Floating-Point Range for variable ’B’:

• Simulation Info: SimMin: 0, SimMax: 896.74.., Whole Number: No

• Type Proposed: numerictype(0,14,4) (Signedness: Unsigned, WordLength:
14, FractionLength: 4)

The floating-point range:

• Has the same number of bits as the ’Default word length’.

• Uses the minimum number of bits to completely represent the range.
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• Uses the rest of the bits to represent the precision.

Integer Range for variable ’A’:

• Simulation Info: SimMin: 0, SimMax: 1, Whole Number: Yes

• Type Proposed: numerictype(0,1,0) (Signedness: Unsigned, WordLength:
1, FractionLength: 0)

The integer range:

• Has the minimum number of bits to represent the whole integer range.

• Has no fractional bits.

All the information in the table is editable, persists across iterations, and is
saved with your code generation project.

Generate Fixed-Point Code and Verify the Generated Code

Based on the numeric types proposed for a default word length of 14, continue
with fixed-point code generation and verification steps and observe the plots.

1 Click on ’Validate Types’ to apply computed fixed-point types.

2 Next choose the option ’Log inputs and outputs for comparison plots’ and
then click on the ’Test Numerics’ to rerun the testbench on the fixed-point
code.
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Having chosen comparison plots option you will see additional plots that
compare the floating and fixed point simulation results for each output
variable.

Examine the error graph for each output variable. It is very high for this
particular design.
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Iterate on the Results

One way to reduce the error is to increase ’Default word length’ and repeat
the fixed-point conversion.

In this example design, when a word length of 14 bits is chosen there is a lot
of truncation error when representing the precision. More bits are required to
the right of the binary point to reduce the truncation errors.

Let us now increase the default word length to 22 bits and repeat the type
proposal and validation steps.

1 Select a ’Default word length’ of 22.

Changing default word length automatically triggers the type proposal step
and new fixed-point types are proposed based on the new word length setting.
Also notice that type validation needs to be rerun and numerics need to be
verified again.

1 Click on ’Validate Types’.

2 Click on ’Test Numerics’ to rerun the testbench on the fixed-point code.

Once these steps are complete, re-examine the comparison plots and notice
that the error is now roughly three orders of magnitude smaller.
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Clean up the Generated Files

Run the following commands to clean up the temporary project folder.

mlhdlc_demo_dir = fullfile(matlabroot, 'toolbox', 'hdlcoder', 'hdlcoderdemo
mlhdlc_temp_dir = [tempdir 'mlhdlc_flt2fix'];
clear mex;
cd (mlhdlc_demo_dir);
rmdir(mlhdlc_temp_dir, 's');
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Working with Generated Fixed-Point Files
This example shows how to work with the files generated during floating-point
to fixed-point conversion.

Introduction

This tutorial uses a simple filter implemented in floating-point and an
associated testbench to illustrate the file structure of the generated fixed-point
code.

design_name = 'mlhdlc_filter.m';
testbench_name = 'mlhdlc_filter_tb.m';

MATLAB Code

1 MATLAB Design: mlhdlc_filter

2 MATLAB testbench: mlhdlc_filter_tb

Create a New Folder and Copy Relevant Files

Executing the following lines of code copies the necessary example files into a
temporary folder.

mlhdlc_demo_dir = fullfile(matlabroot, 'toolbox', 'hdlcoder', 'hdlcoderdemo
mlhdlc_temp_dir = [tempdir 'mlhdlc_flt2fix'];

% create a temporary folder and copy the MATLAB files
cd(tempdir);
[~, ~, ~] = rmdir(mlhdlc_temp_dir, 's');
mkdir(mlhdlc_temp_dir);
cd(mlhdlc_temp_dir);

copyfile(fullfile(mlhdlc_demo_dir, design_name), mlhdlc_temp_dir);
copyfile(fullfile(mlhdlc_demo_dir, testbench_name), mlhdlc_temp_dir);

Simulate the Design
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Simulate the design with the testbench prior to code generation to make sure
there are no runtime errors.

mlhdlc_filter_tb

3-30



Working with Generated Fixed-Point Files

Create a New HDL Coder™ Project

To create a new project, enter the following command:

coder -hdlcoder -new flt2fix_project

Next, add the file ’mlhdlc_filter’ to the project as the MATLAB Function and
’mlhdlc_filter_tb’ as the MATLAB Test Bench.
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You can refer to the Getting Started with MATLAB to HDL Workflow tutorial
for a more complete tutorial on creating and populating MATLAB HDL Coder
projects.

Fixed-Point Code Generation Workflow

Perform the following tasks in preparation for the fixed-point code generation
step:

1 Click the Advisor button to launch the Workflow Advisor.

2 Choose ’Yes’ for the option ’Design needs conversion to fixed-point’.

3 Right-click the ’Propose Fixed-Point Types’ step.

4 Choose ’Run to Selected Task’ to execute the instrumented floating-point
simulation.

Refer to the Floating-Point to Fixed-Point Conversion tutorial for a more
complete description of these steps.

Floating-Point Design Structure

The original floating-point design and testbench have the following
relationship.
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For floating-point to fixed-point conversion, the following requirements apply
to the original design and the testbench:

• The testbench ’mlhdlc_filter_tb.m’ (1) must be a script or a function with no
inputs.

• The design ’mlhdlc_filter.m’ (2) must be a function.

• There must be at least one call to the design from the testbench. All call
sites contribute when determining the proposed fixed-point types.

• Both the design and testbench can call other sub-functions within the file
or other functions on the MATLAB path. Functions that exist within
matlab/toolbox are not converted to fixed-point.

In the current example, the MATLAB testbench ’mlhdlc_filter_tb’ has a single
call to the design function ’mlhdlc_filter’. The testbench calls the design with
floating-point inputs and accumulates the floating-point results for plotting.

Validate Types
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During the type validation step, fixed-point code is generated for this design
and complied to verify that there are no errors when applying the types. The
output files will have the following structure.

The following steps are performed during fixed-point type validation process:

1 The design file ’mlhdlc_filter.m’ is converted to fixed-point to generates
fixed-point MATLAB code, ’mlhdlc_filter_FixPt.m’ (3).

2 All user-written functions called in the floating-point design are converted
to fixed-point and included in the generated design file.

3 A new design wrapper file is created, called ’mlhdlc_filter_wrapper_FixPt.m’
(2). This file converts the floating-point data values supplied by the
testbench to the fixed-point types determined for the design inputs during
the conversion step. These fixed-point values are fed into the converted
fixed-point design, ’mlhdlc_filter_FixPt.m’.

4 ’mlhdlc_filter_FixPt.m’ will be used for HDL code generation.
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5 All the generated fixed-point files are stored in the output directory
’codegen/filter/fixpt’.

Click the links to the generated code in the Workflow Advisor log window to
examine the generated fixed-point design, wrapper, and test bench.

Clean up the Generated Files
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Run the following commands to clean up the temporary project folder.

mlhdlc_demo_dir = fullfile(matlabroot, 'toolbox', 'hdlcoder', 'hdlcoderdemo
mlhdlc_temp_dir = [tempdir 'mlhdlc_flt2fix'];
clear mex;
cd (mlhdlc_demo_dir);
rmdir(mlhdlc_temp_dir, 's');
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Specify Type Proposal Options

You specify whether to propose fraction lengths or word lengths in the
Fixed-Point Conversion window Type Proposal options. By default, the
software proposes fraction lengths for a default word length of 16.

To customize fixed-point type proposals, use the Advanced settings.

Advanced Setting Values Description

ignore simulation
ranges

Propose data types based only on
derived ranges

ignore derived
ranges

Propose data types based only on
simulation ranges

When proposing types

use all collected
data (default)

Proposed data types based on both
simulation and derived ranges

No Do not use integer scaling
for variables that were whole
numbers during simulation.

Optimize whole numbers

Yes (default) Use integer scaling for variables
that were whole numbers during
simulation.

Automatic
(default)

Proposes signed and unsigned
data types depending on the range
information for each variable.

Signed Propose signed data types.

Signedness

Unsigned Propose unsigned data types.
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Advanced Setting Values Description

Safety margin for sim min/max (%) 0 (default) Specify safety factor for
simulation minimum and
maximum values.

The simulation minimum and
maximum values are adjusted
by the percentage designated by
this parameter, allowing you to
specify a range different from
that obtained from the simulation
run. For example, a value of 55
specifies that you want a range at
least 55 percent larger. A value of
-15 specifies that a range up to 15
percent smaller is acceptable.

Generated fixed-point file name suffix _fixpt (default) Specify the suffix to add to
the generated fixed-point file
names. For example, by default,
if you generate a static library
for a project named test, the
generated files are in the subfolder
codegen\lib\test_fixpt. The
generated static library is named
test.lib, but the generated
C code files use the suffix, for
example, test_fixpt.c.

No (default)Transform for-loop index variables

Yes
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Advanced Setting Values Description

Ceiling

Convergent

Floor (default)

Nearest

Round

Rounding method

Zero

SaturateOverflow action

Wrap (default)

FullPrecision
(default)

KeepLSB

KeepMSB

Product mode

SpecifyPrecision

FullPrecision
(default)

KeepLSB

KeepMSB

fimath

Sum mode

SpecifyPrecision

Specify the fimath properties for
the generated fixed-point data
types.

The default fixed-point math
properties use the Floor rounding
and Wrap overflow because they
are the default actions in C.
These settings generate the most
efficient code but might cause
problems with overflow.

After code generation, if required,
modify these settings to optimize
the generated code, or example,
avoid overflow or eliminate bias,
and then rerun the verification.
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Log Data for Histogram
To log data for histograms:

1 In the Fixed-Point Conversion window, click Run Simulation and select
Log data for histogram, and then click the Run Simulation button.

The simulation runs and the simulation minimum and maximum ranges
are displayed on the Variables tab. Using the simulation range data, the
software proposes fixed-point types for each variable based on the default
type proposal settings, and displays them in the Proposed Type column.

2 To view a histogram for a variable, click the variable’s Proposed Type
field.
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3 You can view the effect of changing the proposed data types by:

• Selecting and dragging the white bounding box in the histogram window.
This action does not change the word length of the proposed data type,
but modifies the position of the binary point within the word so that the
fraction length of the proposed data type changes.

• Selecting and dragging the left edge of the bounding box to increase
or decrease the word length. This action does not change the fraction
length or the position of the binary point.
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• Selecting and dragging the right edge to increase or decrease the fraction
length of the proposed data type. This action does not change the
position of the binary point. The word length changes to accommodate
the fraction length.

• Selecting or clearing Signed. Clear Signed to ignore negative values.

Before committing changes, you can revert to the types proposed by the

automatic conversion by clicking .
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View and Modify Variable Information

View Variable Information
To view information about the variables in the MATLAB function selected
in the Navigation pane, use the Variables tab or place your cursor over a
variable in the code window. For more information, see “Viewing Variables”
on page 3-55.

You can view the variable information:

• Variable

Variable name. Variables are classified and sorted as inputs, outputs,
persistent, or local variables.

• Type

The original size, type, and complexity of each variable.

• Sim Min

The minimum value assigned to the variable during simulation.

• Sim Max

The maximum value assigned to the variable during simulation.

To search for variables in the MATLAB code pane and on the Variables tab,
use Ctrl+F. The tool highlights occurrences in the code and displays only the
variable with the specified name on the Variables tab.

Modify Variable Information
If you modify variable information, the tool highlights the values in bold.
You can modify the following fields:

• Static Min

You can enter a value for Static Min into the field or promote Sim Min
information. See “Promote Sim Min and Sim Max Values” on page 3-46.

Editing this field does not trigger static range analysis, but the tool uses
the edited values in subsequent analyses.
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• Static Max

You can enter a value for Static Max into the field or promote Sim Max
information. See “Promote Sim Min and Sim Max Values” on page 3-46.

Editing this field does not trigger static range analysis, but the tool uses
the edited values in subsequent analyses.

• Whole Number

The Fixed-Point Conversion tool uses simulation data to determine whether
the values assigned to a variable during simulation were always integers.
You can manually override this field.

Editing this field does not trigger static range analysis, but the tool uses
the edited value in subsequent analyses.

• Proposed Type

You can modify the signedness, word length, and fraction length settings
individually by:

- On the Variables tab, by modifying the value in the ProposedType
field.

- In the code window, by selecting a variable and then modifying the
ProposedType field.
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If you selected to log data for a histogram, the histogram dynamically
updates to reflect the modifications to the proposed type. You can also
modify the proposed type in the histogram, see “Histogram” on page 3-57.

Revert Changes
• To clear results and revert edited values, right-click the Variables tab and
select Reset entire table.

• To revert the type of a selected variable to the type computed by the tool,
right-click the field and select Undo changes.

• To revert changes to variables, right-click the field and select Undo
changes for all variables.

• To clear a static range value, right-click an edited field and select Clear
static range.
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• To clear manually-entered static range values, right-click anywhere on the
Variables tab and select Clear all manually entered static ranges.

Promote Sim Min and Sim Max Values
The Fixed-Point Conversion tool allows you to promote simulation minimum
and maximum values to static minimum and maximum values. This
capability is useful if you have not specified static ranges and you have
simulated the model with inputs that cover the full intended operating range.

To copy:

• A simulation range for a selected variable, select a variable, right-click
and then select Copy sim range.

• Simulation ranges for top-level inputs, right-click the Static Min or Static
Max column and then select Copy sim ranges for all top-level
inputs.

• Simulation ranges for persistent variables, right-click the Static Min
or Static Max column and then select Copy sim ranges for all
persistent inputs.
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Automated Fixed-Point Conversion

In this section...

“License Requirements” on page 3-47

“Fixed-Point Conversion Capabilities” on page 3-47

“Code Coverage” on page 3-49

“Proposing Data Types” on page 3-53

“Viewing Functions” on page 3-55

“Viewing Variables” on page 3-55

“Histogram” on page 3-57

“Function Replacements” on page 3-58

“Validating Types” on page 3-58

“Testing Numerics” on page 3-59

License Requirements
Fixed-point conversion requires the following licenses:

• Fixed-Point Designer

• MATLAB Coder™

Fixed-Point Conversion Capabilities
You can convert floating-point MATLAB code to fixed-point code using the
Fixed-Point Conversion tool in MATLAB CoderHDL Coder projects. You can
choose to propose data types based on simulation range data, derived (also
known as static) range data, or both.
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During fixed-point conversion, you can:

• Verify that your test files cover the full intended operating range of your
algorithm using code coverage results.

• Propose fraction lengths based on default word lengths.

• Propose word lengths based on default fraction lengths.

• Optimize whole numbers.
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• Specify safety margins for simulation min/max data.

• Validate that you can build your project with the proposed data types.

• Test numerics by running the test filetest bench with the fixed-point types
applied.

• View a histogram of bits used by each variable.

Fixed-Point Conversion Limitations
Fixed-point conversion does not support MATLAB classes.

Code Coverage
By default, the Fixed-Point Conversion tool shows code coverage results. Your
test files should exercise the algorithm over its full operating range so that
the simulation ranges are accurate. The quality of the proposed fixed-point
data types depends on how well the test files cover the operating range of the
algorithm with the accuracy that you want. Reviewing code coverage results
helps you verify that your test file is exercising the algorithm adequately. If
the code coverage is inadequate, modify the test file or add more test files
to increase coverage. If you simulate multiple test files in one run, the tool
displays cumulative coverage. However, if you specify multiple test files but
run them one at a time, the tool displays the coverage of the file that ran last.

Code coverage is on by default. Turn it off only after you have verified that
you have adequate test file coverage. Turning off code coverage might speed
up simulation. To turn off code coverage, in the Fixed-Point Conversion tool:

1 Click Run Simulation.

2 Clear Show code coverage.

The tool covers basic MATLAB control constructs and shows statement
coverage for basic blocks of code. The tool displays a color-coded coverage bar
to the left of the code.

3-49



3 Fixed-Point Conversion

Coverage
Bar Color

How Often Code is Executed During Test File
Simulation

Dark green Always

Light green Sometimes

Orange Once

Red Never
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When you position your cursor over the coverage bar, the color highlighting
extends over the code and the tool displays more information about how
often the code is executed. For MATLAB constructs that affect control flow
(if-elseif-else, switch-case, for-continue-break, return), it displays statement
coverage as a percentage coverage for basic blocks inside these constructs.
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To verify that your test file is testing your algorithm over the intended
operating range, review the code coverage results and take action as described
in the following table.
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Coverage
Bar Color

Action Required

Dark green None

Light green Review percentage coverage and verify that it is reasonable
based on your algorithm. If there are areas of code that you
expect to be executed more frequently, modify your test file
or add more test files to increase coverage.

Orange This is expected behavior for initialization code, for
example, the initialization of persistent variables. For
other cases, verify that this behavior is reasonable for your
algorithm. If there are areas of code that you expect to be
executed more frequently, modify your test file or add more
test files to increase coverage.

Red If the code that is not executed is an error condition, this is
acceptable behavior. If the code should be executed, modify
the test file or add another test file to extend coverage. If
the code is written conservatively and has upper and lower
boundary limits and you cannot modify the test file to reach
this code, add static minimum and maximum values (see
“Computing Derived Ranges”).

Proposing Data Types
The Fixed-Point Conversion tool proposes fixed-point data types based
on computed ranges and the word length or fraction length setting. The
computed ranges are based on simulation range data, derived range data, or
both. If you run a simulation and compute derived ranges, the conversion tool
merges the simulation and derived ranges.

Running a Simulation
When you open the Fixed-Point Conversion tool, it generates an instrumented
MEX function for your entry-point MATLAB fileMATLAB design. If the
build completes without errors, the tool displays compiled information (type,
size, complexity) for functions and variables in your code. To navigate to
local functions, click the Functions tab. If build errors occur, the tool
provides error messages that link to the line of code that caused the build
issues. You must address these errors before running a simulation. Use the
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link to navigate to the offending line of code in the MATLAB editor and
modify the code to fix the issue. If your code uses functions that are not
supported for fixed-point conversion, the tool displays them on the Function
Replacements tab. See “Function Replacements” on page 3-58.

Before running a simulation, specify the test file or filestest bench that you
want to run. When you run a simulation, the tool runs the test filetest bench,
calling the instrumented MEX function. If you modify the MATLAB design
code, the tool automatically generates an updated MEX function before
running a test filethe test bench.

If the test filetest bench runs successfully, the simulation minimum and
maximum values and the proposed types are displayed on the Variables tab.
If the test filetest bench fails, the errors are displayed on the Simulation
Output tab.

Test filesThe test bench should exercise your algorithm over its full operating
range. The quality of the proposed fixed-point data types depends on how
well the test filetest bench covers the operating range of the algorithm with
the desired accuracy. You can add test files and select to run more than one
test file during the simulation. If you run multiple test files, the conversion
tool merges the simulation results.

Optionally, you can select to log data for histograms. After running a
simulation, you can view the histogram for each variable. For more
information, see “Log Data for Histogram”“Log Data for Histogram” on page
3-40.

Computing Derived Ranges
The advantage of proposing data types based on derived ranges is that you
do not have to provide test files that exercise your algorithm over its full
operating range. Running such test files often takes a very long time.

To compute derived ranges and propose data types based on these ranges,
provide static minimum and maximum values for all input variables. To
improve the analysis, enter as much static range information as possible for
other variables. You can promote simulation ranges to use as static ranges.
Alternatively, if you know what data type your hardware target uses, set the
proposed data type to match this type.

3-54



Automated Fixed-Point Conversion

When you select Compute Derived Ranges, the tool runs a derived range
analysis to compute static ranges for variables in your MATLAB algorithm.
When the analysis is complete, the static ranges are displayed on the
Variables tab. If the run produces +/-Inf derived ranges, consider defining
ranges for all persistent variables.

Optionally, you can select Quick derived range analysis. With this option,
the conversion tool performs faster static analysis. The computed ranges
might be larger than necessary. Select this option in cases where the static
analysis takes more time than you can afford.

If the derived range analysis for your project is taking a long time, you can
optionally set a timeout. The tool aborts the analysis when the timeout is
reached.

Viewing Functions
You can view a list of functions in your project on the Navigation pane. This
list also includes function specializations. When you select a function from
the list, the MATLAB code for that function is displayed in the Fixed-Point
Conversion tool.

Viewing Variables
The Variables tab provides the following information for each variable in the
function selected in the Navigation pane:

• Type— The original data type of the variable in the MATLAB algorithm.

• Sim Min and Sim Max— The minimum and maximum values assigned
to the variable during simulation.

You can edit the simulation minimum and maximum values. Edited
fields are shown in bold. Editing these fields does not trigger static range
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analysis, but the tool uses the edited values in subsequent analyses. You
can revert to the types proposed by the tool.

• Static Min and Static Max— The static minimum and maximum values.

To compute derived ranges and propose data types based on these ranges,
provide static minimum and maximum values for all input variables. To
improve the analysis, enter as much static range information as possible
for other variables.

When you compute derived ranges, the Fixed-Point Conversion tool runs a
static analysis to compute static ranges for variables in your code. When
the analysis is complete, the static ranges are displayed. You can edit the
computed results. Edited fields are shown in bold. Editing these fields does
not trigger static range analysis, but the tool uses the edited values in
subsequent analyses. You can revert to the types proposed by the tool.

• Whole Number — Whether all values assigned to the variable during
simulation are integers.

The Fixed-Point Conversion tool determines whether a variable is always
a whole number. You can modify this field. Edited fields are shown in
bold. Editing these fields does not trigger static range analysis, but the
tool uses the edited values in subsequent analyses. You can revert to the
types proposed by the tool.

• The proposed fixed-point data type for the specified word (or fraction)
length. Proposed data types use the numerictype notation. For example,
numerictype(1,16,12) denotes a signed fixed-point type with a word
length of 16 and a fraction length of 12. numerictype(0,16,12) denotes an
unsigned fixed-point type with a word length of 16 and a fraction length
of 12.

You can also view and edit variable information in the code pane by placing
your cursor over a variable name.

You can use Ctrl+F to search for variables in the MATLAB code and on the
Variables tab. The tool highlights occurrences in the code and displays only
the variable with the specified name on the Variables tab.
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Histogram
The histogram provides the range of the proposed data type and the
percentage of simulation values that the proposed data type covers. The bit
weights are displayed along the X-axis, and the percentage of occurrences
along the Y-axis. Each bin in the histogram corresponds to a bit in the binary
word. For example, this histogram displays the range for a variable of type
numerictype(1,16,14).

You can view the effect of changing the proposed data types by:

• Dragging the edges of the bounding box in the histogram window to change
the proposed data type.
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• Selecting or clearing Signed.

To revert to the types proposed by the automatic conversion, in the histogram

window, click .

Function Replacements
If your MATLAB code uses functions that do not have fixed-point support,
the tool lists these functions on the Function Replacements tab. You can
add and remove function replacements from this list. If you enter a function
replacements for a function, the replacement function is used when you build
the project. If you do not enter a replacement, the tool uses the type specified
in the original MATLAB code for the function.

Note Using this table, you can replace the names of the functions but you
cannot replace argument patterns.

Validating Types
Selecting Validate Types validates the build using the proposed fixed-point
data types. If the validation is successful, you are ready to test the numerical
behavior of the fixed-point MATLAB algorithm.
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If the errors or warnings occur during validation, they are displayed on the
Type Validation Output tab. If errors or warning occur:

• On the Variables tab, inspect the proposed types and manually modified
types to verify that they are valid.

• On the Function Replacements tab, verify that you have provided
function replacements for unsupported functions.

Testing Numerics
After validating the proposed fixed-point data types, select Test Numerics
to verify the behavior of the fixed-point MATLAB algorithm. By default, if
you added a test filetest bench to define inputs or run a simulation, the tool
uses this test filetest bench to test numerics. Optionally, you can add test files
and select to run more than one test file. The tool compares the numerical
behavior of the generated fixed-point MATLAB code with the original
floating-point MATLAB code. If you select to log inputs and outputs for
comparison plots, the tool generates an additional plot for each scalar output.
This plot shows the floating-point and fixed-point results and the difference
between them. For non-scalar outputs, only the error information is shown.

By default, the Fixed-Point Conversion tool runs the test files that you added
and selected for running the simulation. You can add test files and select to
run more than one test file to test numerics.

If the numerical results do not meet your desired accuracy after fixed-point
simulation, modify fixed-point data type settings and repeat the type
validation and numerical testing steps. You might have to iterate through
these steps multiple times to achieve the desired results.
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Create and Set Up Your Project

In this section...

“Create a New Project” on page 4-2

“Open an Existing Project” on page 4-4

“Add Files to the Project” on page 4-4

Create a New Project

1 At the MATLAB command line, enter:

hdlcoder

2 Enter a project name in the project dialog box and click OK.

HDL Coder creates the project in the local working folder, and, by default,
opens the project in the right side of the MATLAB workspace.
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Alternatively, you can create a new HDL Coder project from the apps gallery:

1 On the Apps tab, on the far right of the Apps section, click the arrow .

2 Under Code Generation, click HDL Coder.

3 Enter a project name in the project dialog box and click OK.
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Open an Existing Project
At the MATLAB command line, enter:

open project_name

where project_name specifies the full path to the project file.

Alternatively, navigate to the folder that contains your project and
double-click the .prj file.

Add Files to the Project

Add the MATLAB Function (Design Under Test)
First, you must add the MATLAB file from which you want to generate code
to the project. Add only the top-level function that you call from MATLAB
(the Design Under Test). Do not add files that are called by this file. Do
not add files that have spaces in their names. The path must not contain
spaces, as spaces can lead to code generation failures in certain operating
system configurations.

To add a file, do one of the following:

• In the project pane, underMATLAB Function , click the Add MATLAB
function link and browse to the file.

• Drag a file from the current folder and drop it in the project pane under
MATLAB Function.

If the functions that you added have inputs, and you do not specify a
test bench, you must define these inputs. See “Primary Function Input
Specification” on page 4-6.

Add a MATLAB Test Bench
You must add a MATLAB test bench unless your design does not need
fixed-point conversion and you do not want to generate an RTL test bench.
If you do not add a test bench, you must define the inputs to your top-level
MATLAB function. For more information, see “Primary Function Input
Specification” on page 4-6.
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To add a test bench, do one of the following:

• In the project panel, under MATLAB Test Bench, click the Add
MATLAB test bench link and browse to the file.

• Drag a file from the current folder and drop it in the project pane under
MATLAB Test Bench.
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Primary Function Input Specification

In this section...

“When to Specify Input Properties” on page 4-6

“Why You Must Specify Input Properties” on page 4-6

“Properties to Specify” on page 4-7

“Rules for Specifying Properties of Primary Inputs” on page 4-12

“Methods for Defining Properties of Primary Inputs” on page 4-12

“Define Input Properties by Example at the Command Line” on page 4-13

“Specify Constant Inputs at the Command Line” on page 4-16

“Specify Variable-Size Inputs at the Command Line” on page 4-18

When to Specify Input Properties
If you supply a test bench for your MATLAB algorithm, you do not need to
manually specify the primary function inputs. The HDL Coder software uses
the test bench to infer the data types.

Why You Must Specify Input Properties
Because C and C++ are statically typed languages, MATLAB CoderHDL
Coder Fixed-Point Designer must determine the properties of all variables in
the MATLAB files at compile time. To infer variable properties in MATLAB
files, MATLAB CoderHDL CoderFixed-Point Designer must be able to
identify the properties of the inputs to the primary function, also known as
the top-level or entry-point function. Therefore, if your primary function
has inputs, you must specify the properties of these inputs, to MATLAB
CoderHDL CoderFixed-Point Designer. If your primary function has no
input parameters, MATLAB CoderHDL CoderFixed-Point Designer can
compile your MATLAB file without modification. You do not need to specify
properties of inputs to local functions or external functions called by the
primary function.

If you use the tilde (~) character to specify unused function inputs:
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• In MATLAB Coder projects, if you want a different type to appear in the
generated code, specify the type. Otherwise, the inputs default to real,
scalar doubles.

• When generating code with codegen, you must specify the type of these
inputs using the -args option.

If you use the tilde (~) character to specify unused function inputs in an HDL
Coder project, and you want a different type to appear in the generated code,
specify the type. Otherwise, the inputs default to real, scalar doubles.

Properties to Specify
If your primary function has inputs, you must specify the following properties
for each input.

For... Specify properties...

Class Size Complexity numerictype fimath

Fixed-point
inputs

Each field in
a structure
input

Specify properties for each field according to its class

When a primary input is a structure, the code generation software treats each
field as a separate input. Therefore, you must specify properties for allfields of a
primary structure input in the order that they appear in the structure definition:

• For each field of input structures, specify class, size, and complexity.

• For each field that is fixed-point class, also specify numerictype, and fimath.

Other inputs
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For... Specify properties...

Class Size Complexity numerictype fimath

Fixed-point
inputs

Other inputs

The following data types are not supported for primary function inputs,
although you can use them within the primary function:

• structure

• matrix

Variable-size data is not supported in the test bench or the primary function.

Default Property Values
MATLAB CoderHDL CoderFixed-Point Designer assigns the following default
values for properties of primary function inputs.

Property Default

class double

size scalar

complexity real

numerictype No default

fimath MATLAB default fimath object

Property Default

class double

size scalar

complexity real
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Property Default

numerictype No default

fimath hdlfimath

Specifying Default Values for Structure Fields. In most cases, when
you don’t explicitly specify values for properties, MATLAB CoderHDL
CoderFixed-Point Designer uses defaults except for structure fields. The
only way to name a field in a structure is to set at least one of its properties.
Therefore, you might need to specify default values for properties of structure
fields. For examples, see “Specifying Class and Size of Scalar Structure” and
“Specifying Class and Size of Structure Array”.

Specifying Default fimath Values for MEX Functions. MEX functions
generated with MATLAB CoderFixed-Point Designer use the default fimath
value in effect at compile time. If you do not specify a default fimath value,
MATLAB CoderFixed-Point Designer uses the MATLAB default fimath. The
MATLAB factory default has the following properties:

RoundingMethod: Nearest
OverflowAction: Saturate
ProductMode: FullPrecision
SumMode: FullPrecision
CastBeforeSum: true

For more information, see “fimath for Sharing Arithmetic Rules”.

When running MEX functions that depend on the default fimath value, do
not change this value during your MATLAB session. Otherwise, you receive
a run-time warning, alerting you to a mismatch between the compile-time
and run-time fimath values.

For example, suppose you define the following MATLAB function test:

function y = test %#codegen
y = fi(0);

The function test constructs a fi object without explicitly specifying a fimath
object. Therefore, test relies on the default fimath object in effect at compile
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time. At the MATLAB prompt, generate the MEX function text_mex to use
the factory setting of the MATLAB default fimath:

codegen test
% codegen generates a MEX function, test_mex,
% in the current folder

Next, run test_mex to display the MATLAB default fimath value:

test_mex

ans =

0

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 16

FractionLength: 15

Now create a local MATLAB fimath value. so you no longer use the default
setting:

F = fimath('RoundingMethod','Floor');

Finally, clear the MEX function from memory and rerun it:

clear test_mex
test_mex

The mismatch is detected and causes an error:

??? This function was generated with a different default
fimath than the current default.

Error in ==> test_mex

Supported Classes
The following table presents the class names supported by MATLAB
CoderHDL CoderFixed-Point Designer.
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Class Name Description

logical Logical array of true and false values

char Character array

int8 8-bit signed integer array

uint8 8-bit unsigned integer array

int16 16-bit signed integer array

uint16 16-bit unsigned integer array

int32 32-bit signed integer array

uint32 32-bit unsigned integer array

int64 64-bit signed integer array

uint64 64–bit unsigned integer array

single Single-precision floating-point or
fixed-point number array

double Double-precision floating-point or
fixed-point number array

struct Structure array

embedded.fi Fixed-point number array

Class Name Description

logical Logical array of true and false values

char Character array

int8 8-bit signed integer array

uint8 8-bit unsigned integer array

int16 16-bit signed integer array

uint16 16-bit unsigned integer array

int32 32-bit signed integer array

uint32 32-bit unsigned integer array
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Class Name Description

single Single-precision floating-point or
fixed-point number array

double Double-precision floating-point or
fixed-point number array

embedded.fi Fixed-point number array

Rules for Specifying Properties of Primary Inputs
When specifying the properties of primary inputs, follow these rules.

• You must specify the class of all primary inputs. If you do not specify the
size or complexity of primary inputs, they default to real scalars.

• For each primary function input whose class is fixed point (fi), you must
specify the input numerictype and fimath properties.

• For each primary function input whose class is struct, you must specify
the properties of each of its fields in the order that they appear in the
structure definition.

Methods for Defining Properties of Primary Inputs
Method Advantages Disadvantages

“Specifying Properties
of Primary Function
Inputs in a Project”

• If you are working in a MATLAB
CoderHDL Coder project, easy
to use

• Does not alter original MATLAB
code

• MATLAB CoderHDL Coder
saves the definitions in the
project file

• Not efficient for specifying
memory-intensive inputs such
as large structures and arrays

“Define Input
Properties by
Example at the
Command Line” on
page 4-13

• Easy to use

• Does not alter original MATLAB
code

• Must be specified at the
command line every time you
invoke codegen (unless you use
a script)
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Method Advantages Disadvantages

Note If you define
input properties
programmatically
in the MATLAB file,
you cannot use this
method

• Designed for prototyping a
function that has a small
number of primary inputs

• Not efficient for specifying
memory-intensive inputs such
as large structures and arrays

“Define Input
Properties
Programmatically
in the MATLAB File”

• Integrated with MATLAB code;
no need to redefine properties
each time you invoke MATLAB
CoderHDL Coder

• Provides documentation of
property specifications in the
MATLAB code

• Efficient for specifying
memory-intensive inputs
such as large structures

• Uses complex syntax

• MATLAB CoderHDL Coder
project files do not currently
recognize properties defined
programmatically. If you are
using a project, you must
reenter the input types in the
project.

Define Input Properties by Example at the Command
Line

• “Command Line Option -args” on page 4-14

• “Rules for Using the -args Option” on page 4-14

• “Specifying Properties of Primary Inputs by Example at the Command
Line” on page 4-14

• “Specifying Properties of Primary Fixed-Point Inputs by Example at the
Command Line” on page 4-15
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Command Line Option -args
The codegen function provides a command-line option -args for specifying
the properties of primary (entry-point) function inputs as a cell array of
example values. The cell array can be a variable or literal array of constant
values. Using this option, you specify the properties of inputs at the same
time as you generate code for the MATLAB function with codegen. If you
have a test function or script that calls the entry-point MATLAB function with
the required types, you can use coder.getArgTypes to determine the types of
the function inputs. coder.getArgTypes returns a cell array of coder.Type
objects that you can pass to codegen using the -args option. For more
information, see the coder.getArgTypes function reference information.

See “Specifying General Properties of Primary Inputs” for codegen.

Rules for Using the -args Option
When using the -args command-line option to define properties by example,
follow these rules:

• The cell array of sample values must contain the same number of elements
as primary function inputs.

• The order of elements in the cell array must correspond to the order in
which inputs appear in the primary function signature — for example, the
first element in the cell array defines the properties of the first primary
function input.

Note If you specify an empty cell array with the -args option, codegen
interprets this to mean that the function takes no inputs; a compile-time error
occurs if the function does have inputs.

Specifying Properties of Primary Inputs by Example at the
Command Line
Consider a MATLAB function that adds its two inputs:

function y = mcf(u,v)
%#codegen
y = u + v;
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The following examples show how to specify different properties of the
primary inputs u and v by example at the command line:

• Use a literal cell array of constants to specify that both inputs are real
scalar doubles:

codegen mcf -args {0,0}

• Use a literal cell array of constants to specify that input u is an unsigned
16-bit, 1-by-4 vector and input v is a scalar double:

codegen mcf -args {zeros(1,4,'uint16'),0}

• Assign sample values to a cell array variable to specify that both inputs are
real, unsigned 8-bit integer vectors:

a = uint8([1;2;3;4])
b = uint8([5;6;7;8])
ex = {a,b}
codegen mcf -args ex

Specifying Properties of Primary Fixed-Point Inputs by
Example at the Command Line
To generate a MEX function or C/C++ code for fixed-point MATLAB code, you
must install Fixed-Point Designer software.

Consider a MATLAB function that calculates the square root of a fixed-point
number:

%#codegen
function y = sqrtfi(x)
y = sqrt(x);

To specify the properties of the primary fixed-point input x by example on the
MATLAB command line, follow these steps:

1 Define the numerictype properties for x, as in this example:

T = numerictype('WordLength',32,...
'FractionLength',23,...
'Signed',true);
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2 Define the fimath properties for x, as in this example:

F = fimath('SumMode','SpecifyPrecision',...
'SumWordLength',32,...
'SumFractionLength',23,...
'ProductMode','SpecifyPrecision',...
'ProductWordLength',32,...
'ProductFractionLength',23);

3 Create a fixed-point variable with the numerictype and fimath properties
you just defined, as in this example:

myeg = { fi(4.0,T,F) };

4 Compile the function sqrtfi using the codegen command, passing the
variable myeg as the argument to the -args option, as in this example:

codegen sqrtfi -args myeg;

Specify Constant Inputs at the Command Line
In cases where you know your primary inputs will not change at run time,
it is more efficient to specify them as constant values than as variables to
eliminate unnecessary overhead in generated code. Common uses of constant
inputs are for flags that control how an algorithm executes and values that
specify the sizes or types of data.

You can define inputs to be constants using the -args command-line option
with a coder.Constant object, as in this example:

-args {coder.Constant(constant_input)}

This expression specifies that an input will be a constant with the size, class,
complexity, and value of constant_input.

Calling Functions with Constant Inputs
codegen compiles constant function inputs into the generated code. As
a result, the MEX function signature differs from the MATLAB function
signature. At run time you supply the constant argument to the MATLAB
function, but not to the MEX function.
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For example, consider the following function identity which copies its input
to its output:

function y = identity(u) %#codegen
y = u;

To generate a MEX function identity_mex with a constant input, at the
MATLAB prompt, type the following command:

codegen identity -args {coder.Constant(42)}

To run the MATLAB function, supply the constant argument:

identity(42)

You get the following result:

ans =

42

Now, try running the MEX function with this command:

identity_mex

You should get the same answer.

Specifying a Structure as a Constant Input
Suppose you define a structure tmp in the MATLAB workspace to specify
the dimensions of a matrix:

tmp = struct('rows', 2, 'cols', 3);

The following MATLAB function rowcol accepts a structure input p to define
matrix y:

function y = rowcol(u,p) %#codegen
y = zeros(p.rows,p.cols) + u;

The following example shows how to specify that primary input u is a double
scalar variable and primary input p is a constant structure:
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codegen rowcol -args {0,coder.Constant(tmp)}

Specify Variable-Size Inputs at the Command Line
Variable-size data is data whose size might change at run time. MATLAB
supports bounded and unbounded variable-size data for code generation.
Bounded variable-size data has fixed upper bounds. This data can be allocated
statically on the stack or dynamically on the heap. Unbounded variable-size
data does not have fixed upper bounds. This data must be allocated on the
heap. You can define inputs to have one or more variable-size dimensions —
and specify their upper bounds — using the -args option and coder.typeof
function:

-args {coder.typeof(example_value, size_vector, variable_dims}

Specifies a variable-size input with:

• Same class and complexity as example_value

• Same size and upper bounds as size_vector

• Variable dimensions specified by variable_dims

When you enable dynamic memory allocation, you can specify Inf in the size
vector for dimensions with unknown upper bounds at compile time.

When variable_dims is a scalar, it is applied to all the dimensions, with the
following exceptions:

• If the dimension is 1 or 0, which are fixed.

• If the dimension is unbounded, which is always variable size.

For more information, see coder.typeof and “Generate Code for
Variable-Size Data”.

Specifying a Variable-Size Vector Input

1 Write a function that computes the average of every n elements of a vector
A and stores them in a vector B:

function B = nway(A,n) %#codegen
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% Compute average of every N elements of A and put them in B.

coder.extrinsic('error');
if ((mod(numel(A),n) == 0) && (n>=1 && n<=numel(A)))

B = ones(1,numel(A)/n);
k = 1;
for i = 1 : numel(A)/n

B(i) = mean(A(k + (0:n-1)));
k = k + n;

end
else

B = zeros(1,0);
error('n <= 0 or does not divide number of elements evenly');

end

2 Specify the first input A as a vector of double values. Its first dimension
stays fixed in size and its second dimension can grow to an upper bound of
100. Specify the second input n as a double scalar.

codegen -report nway -args {coder.typeof(0,[1 100],1),1}

3 As an alternative, assign the coder.typeof expression to a MATLAB
variable, then pass the variable as an argument to -args:

vareg = coder.typeof(0,[1 100],1)
codegen -report nway -args {vareg, 0}
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Basic HDL Code Generation with the Workflow Advisor
This example shows how to work with MATLAB HDL Coder™ projects to
generate HDL from MATLAB designs.

Introduction

This example helps you familiarize yourself with the following aspects of
HDL code generation:

1 Generating HDL code from MATLAB design.

2 Generating a HDL test bench from a MATLAB test bench.

3 Verifying the generated HDL code using a HDL simulator.

4 Synthesizing the generated HDL code using a HDL synthesis tool.

MATLAB Design

The MATLAB code used in this example implements a simple symmetric FIR
filter. This example also shows a MATLAB test bench that exercises the filter.

design_name = 'mlhdlc_sfir.m';
testbench_name = 'mlhdlc_sfir_tb.m';

1 MATLAB Design: mlhdlc_sfir

2 MATLAB testbench: mlhdlc_sfir_tb

Create a New Folder and Copy Relevant Files

Execute the following lines of code to copy the necessary example files into a
temporary folder.

mlhdlc_demo_dir = fullfile(matlabroot, 'toolbox', 'hdlcoder', 'hdlcoderdemo
mlhdlc_temp_dir = [tempdir 'mlhdlc_sfir'];

% Create a temporary folder and copy the MATLAB files.
cd(tempdir);
[~, ~, ~] = rmdir(mlhdlc_temp_dir, 's');
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mkdir(mlhdlc_temp_dir);
cd(mlhdlc_temp_dir);

copyfile(fullfile(mlhdlc_demo_dir, design_name), mlhdlc_temp_dir);
copyfile(fullfile(mlhdlc_demo_dir, testbench_name), mlhdlc_temp_dir);

Simulate the Design

Simulate the design with the test bench prior to code generation to make sure
there are no runtime errors.

mlhdlc_sfir_tb

Create a New HDL Coder Project

To create a new project, enter the following command:

coder -hdlcoder -new mlhdlc_sfir

Next, add the file ’mlhdlc_sfir.m’ to the project as the MATLAB Function and
’mlhdlc_sfir_tb.m’ as the MATLAB Test Bench.

You can refer to Getting Started with MATLAB to HDL Workflow tutorial for
a more complete introduction to creating and populating HDL Coder projects.

Step 1: Generate Fixed-Point MATLAB Code

Right-click the ’Float-to-Fixed Workflow’ step and choose the option ’Run this
task’ to run all the steps to generate fixed-point MATLAB code.

Examine the generated fixed-point MATLAB code by clicking the links in the
log window to open the MATLAB code in the editor.

For more details on fixed-point conversion, refer to the Floating-Point to
Fixed-Point Conversion tutorial.
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Step 2: Generate HDL Code

This step generates Verilog code from the generated fixed-point MATLAB
design, and a Verilog test bench from the MATLAB test bench wrapper.

To set code generation options and generate HDL code:

1 Click the ’Code Generation’ step to view the HDL code generation options
panel.

2 In the Target tab, choose ’Verilog’ as the ’Language’ option.

3 Select the ’Generate HDL’ and ’Generate HDL test bench’ options.
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4 In the Test bench tab, choose the ’Multi-file test bench’ option to generate
test bench code and test bench data (stimulus and response) in separate
files.

5 In the ’Optimizations’ tab, choose ’1’ as the Input and Output pipeline
length, and enable the ’Distribute pipeline registers’ option.

6 In the ’Coding style’ tab, choose ’Include MATLAB source code as comments’
and ’Generate report’ to generate a code generation report with comments
and traceability links.

7 Click the ’Run’ button to generate both the Verilog design and testbench
with reports.
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Examine the log window and click the links to explore the generated code
and the reports.

Step 3: Simulate the Generated Code

HDL Coder automates the process of running the generated HDL test bench
using the ModelSim or ISIM™ simulator, and reports if the generated HDL
simulation matches the numerics and latency with respect to the fixed-point
MATLAB simulation.
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Step 4: Synthesize the Generated Code

HDL Coder also creates a Xilinx ISE™ or Altera Quartus™ project with the
selected options and runs the selected logic synthesis and place-and-route
steps for the generated HDL code.
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Examine the log window to view the results of synthesis steps.
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Clean up the Generated Files

Run the following commands to clean up the temporary project folder.

mlhdlc_demo_dir = fullfile(matlabroot, 'toolbox', 'hdlcoder', 'hdlcoderdemo
mlhdlc_temp_dir = [tempdir 'mlhdlc_sfir'];
clear mex;
cd (mlhdlc_demo_dir);
rmdir(mlhdlc_temp_dir, 's');

4-28



HDL Code Generation from System Objects

HDL Code Generation from System Objects
This example shows how to generate HDL code from MATLAB code that
contains System objects.

MATLAB Design

The MATLAB code used in this example implements a simple symmetric FIR
filter and uses the dsp.Delay System object to model state. This example also
shows a MATLAB test bench that exercises the filter.

design_name = 'mlhdlc_sysobj_ex.m';
testbench_name = 'mlhdlc_sysobj_ex_tb.m';

Let us take a look at the MATLAB design.

type(design_name);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% MATLAB design: Symmetric FIR Filter
%
% Design pattern covered in this example:
% Filter states modeled using DSP System object (dsp.Delay)
% Filter coefficients passed in as parameters to the design
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%#codegen
function [y_out, delayed_xout] = mlhdlc_sysobj_ex(x_in, h_in1, h_in2, h_in3
% Symmetric FIR Filter

persistent h1 h2 h3 h4 h5 h6 h7 h8;
if isempty(h1)

h1 = dsp.Delay('FrameBasedProcessing', false);
h2 = dsp.Delay('FrameBasedProcessing', false);
h3 = dsp.Delay('FrameBasedProcessing', false);
h4 = dsp.Delay('FrameBasedProcessing', false);
h5 = dsp.Delay('FrameBasedProcessing', false);
h6 = dsp.Delay('FrameBasedProcessing', false);
h7 = dsp.Delay('FrameBasedProcessing', false);
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h8 = dsp.Delay('FrameBasedProcessing', false);
end

h1p = step(h1, x_in);
h2p = step(h2, h1p);
h3p = step(h3, h2p);
h4p = step(h4, h3p);
h5p = step(h5, h4p);
h6p = step(h6, h5p);
h7p = step(h7, h6p);
h8p = step(h8, h7p);

a1 = h1p + h8p;
a2 = h2p + h7p;
a3 = h3p + h6p;
a4 = h4p + h5p;

m1 = h_in1 * a1;
m2 = h_in2 * a2;
m3 = h_in3 * a3;
m4 = h_in4 * a4;

a5 = m1 + m2;
a6 = m3 + m4;

% filtered output
y_out = a5 + a6;
% delayout input signal
delayed_xout = h8p;

end

type(testbench_name);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% MATLAB test bench for the FIR filter
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

clear mlhdlc_sysobj_ex;
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x_in = cos(2.*pi.*(0:0.001:2).*(1+(0:0.001:2).*75)).';

h1 = -0.1339;
h2 = -0.0838;
h3 = 0.2026;
h4 = 0.4064;

len = length(x_in);
y_out_sysobj = zeros(1,len);
x_out_sysobj = zeros(1,len);
a = 10;

for ii=1:len
data = x_in(ii);
% call to the design 'sfir' that is targeted for hardware
[y_out_sysobj(ii), x_out_sysobj(ii)] = mlhdlc_sysobj_ex(data, h1, h2, h

end

figure('Name', [mfilename, '_plot']);
subplot(2,1,1);
plot(1:len,x_in); title('Input signal with noise');
subplot(2,1,2);
plot(1:len,y_out_sysobj); title('Filtered output signal');

Create a New Folder and Copy Relevant Files

Execute the following lines of code to copy the necessary example files into a
temporary folder.

mlhdlc_demo_dir = fullfile(matlabroot, 'toolbox', 'hdlcoder', 'hdlcoderdemo
mlhdlc_temp_dir = [tempdir 'mlhdlc_sysobj_intro'];

% Create a temporary folder and copy the MATLAB files.
cd(tempdir);
[~, ~, ~] = rmdir(mlhdlc_temp_dir, 's');
mkdir(mlhdlc_temp_dir);
cd(mlhdlc_temp_dir);
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copyfile(fullfile(mlhdlc_demo_dir, design_name), mlhdlc_temp_dir);
copyfile(fullfile(mlhdlc_demo_dir, testbench_name), mlhdlc_temp_dir);

Simulate the Design

Simulate the design with the test bench prior to code generation to make sure
there are no runtime errors.

mlhdlc_sysobj_ex_tb
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Create a New HDL Coder™ Project

To create a new project, enter the following command:

coder -hdlcoder -new mlhdlc_sysobj_prj

Next, add the file ’mlhdlc_sysobj_ex.m’ to the project as the MATLAB
Function and ’mlhdlc_sysobj_ex_tb.m’ as the MATLAB Test Bench.

You can refer to the Getting Started with MATLAB to HDL Workflow tutorial
for a more complete tutorial on creating and populating MATLAB HDL Coder
projects.

Run Fixed-Point Conversion and HDL Code Generation

Launch the Workflow Advisor. In the Workflow Advisor, right-click the ’Code
Generation’ step. Choose the option ’Run to selected task’ to run all the steps
from the beginning through HDL code generation.

Examine the generated HDL code by clicking the links in the log window.

Supported System objects

Refer to the documentation for a list of System objects supported for HDL
code generation.

Clean up the Generated Files

Run the following commands to clean up the temporary project folder.

mlhdlc_demo_dir = fullfile(matlabroot, 'toolbox', 'hdlcoder', 'hdlcoderdemo
mlhdlc_temp_dir = [tempdir 'mlhdlc_sysobj_intro'];
clear mex;
cd (mlhdlc_demo_dir);
rmdir(mlhdlc_temp_dir, 's');
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Generate Instantiable Code for Functions

In this section...

“How to Generate Instantiable Code for Functions” on page 4-34

“Generate Code Inline for Specific Functions” on page 4-34

“Limitations for Instantiable Code Generation for Functions” on page 4-34

You can use the Generate instantiable code for functions option to
generate a VHDL entity or Verilog module for each function. The software
generates code for each entity or module in a separate file.

How to Generate Instantiable Code for Functions
To enable instantiable code generation for functions:

1 In the HDL Workflow Advisor, select the HDL Code Generation task.

2 In the Advanced tab, select Generate instantiable code for functions.

Generate Code Inline for Specific Functions
If you want to generate instantiable code for some functions but not others,
enable the option to generate instantiable code for functions, and use
coder.inline. See coder.inline for details.

Limitations for Instantiable Code Generation for
Functions
The software generates code inline when:

• Function calls are within conditional code or for loops.

• Any function is called with a nonconstant struct input.

• The function has state, such as a persistent variable, and is called multiple
times.
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Enable MATLAB Function Block Generation

In this section...

“Requirements for MATLAB Function Block Generation” on page 4-35

“Enable MATLAB Function Block Generation” on page 4-35

“Results of MATLAB Function Block Generation” on page 4-35

Requirements for MATLAB Function Block Generation
During HDL code generation, your MATLAB algorithm must go through
the floating-point to fixed-point conversion process, even if it is already a
fixed-point algorithm.

Enable MATLAB Function Block Generation

Using the GUI
To enable MATLAB Function block generation using the HDL Workflow
Advisor:

1 In the HDL Workflow Advisor, on the left, click Code Generation.

2 In the Advanced tab, select the Generate MATLAB Function Black
Box option.

Using the Command Line
To enable MATLAB Function block generation, at the command line, enter:

hdlcfg = coder.config('hdl');
hdlcfg.GenerateMLFcnBlock = true;

Results of MATLAB Function Block Generation
After you generate HDL code, an untitled model opens containing a MATLAB
Function block.
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You can use the MATLAB Function block as part of a larger model in
Simulink® for simulation and further HDL code generation.

To learn more about generating a MATLAB Function block from a MATLAB
algorithm, see “System Design with HDL Code Generation from MATLAB
and Simulink” on page 4-37.

4-36



System Design with HDL Code Generation from MATLAB and Simulink

System Design with HDL Code Generation from MATLAB
and Simulink

This example shows how to generate a MATLAB Function block from
a MATLAB design for system simulation, code generation, and FPGA
programming in Simulink.

Introduction

HDL Coder can generate HDL code from both MATLAB and Simulink. The
coder can also generate a Simulink component, the MATLAB Function block,
from your MATLAB code.

This capability enables you to:

1 Design an algorithm in MATLAB;

2 Generate a MATLAB Function block from your MATLAB design;

3 Use the MATLAB component in a Simulink model of the system;

4 Simulate and optimize the system model;

5 Generate HDL code; and

6 Program an FPGA with the entire system design.

In this example, you will generate a MATLAB Function block from MATLAB
code that implements a FIR filter.

MATLAB Design

The MATLAB code used in the example is a simple FIR filter. The example
also shows a MATLAB testbench that exercises the filter.

design_name = 'mlhdlc_fir.m';
testbench_name = 'mlhdlc_fir_tb.m';

1 Design: mlhdlc_fir

2 Test Bench: mlhdlc_fir_tb
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Create a New Folder and Copy Relevant Files

Execute the following lines of code to copy the example files into a temporary
folder.

mlhdlc_demo_dir = fullfile(matlabroot, 'toolbox', 'hdlcoder', 'hdlcoderdemo
mlhdlc_temp_dir = [tempdir 'mlhdlc_fir'];

% Create a temporary folder and copy the MATLAB files
cd(tempdir);
[~, ~, ~] = rmdir(mlhdlc_temp_dir, 's');
mkdir(mlhdlc_temp_dir);
cd(mlhdlc_temp_dir);

copyfile(fullfile(mlhdlc_demo_dir, design_name), mlhdlc_temp_dir);
copyfile(fullfile(mlhdlc_demo_dir, testbench_name), mlhdlc_temp_dir);

Simulate the Design

To simulate the design with the test bench prior to code generation to make
sure there are no runtime errors, enter the following command:

mlhdlc_fir_tb

Create a New Project

To create a new HDL Coder project, enter the following command:

coder -hdlcoder -new fir_project

Next, add the file ’mlhdlc_fir.m’ to the project as the MATLAB Function and
’mlhdlc_fir_tb.m’ as the MATLAB Test Bench.

Click the Workflow Advisor button to launch the HDL Workflow Advisor.

Enable the MATLAB Function Block Option

To generate a MATLAB Function block from a MATLAB HDL design, you
must have a Simulink license. If the following command returns ’1’, Simulink
is available:
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license('test', 'Simulink')

In the HDL Workflow Advisor Advanced tab, enable the Generate MATLAB
Function Block option.

Run Floating-Point to Fixed-Point Conversion and Generate Code

To generate a MATLAB Function block, you must also convert your design
from floating-point to fixed-point.

Right-click the ’Code Generation’ step and choose the option ’Run to selected
task’ to run all the steps from the beginning through HDL code generation.

Examine the Generated MATLAB Function Block

An untitled model opens after HDL code generation. It has a MATLAB
Function block containing the fixed-point MATLAB code from your MATLAB
HDL design. HDL Coder automatically applies settings to the model and
MATLAB Function block so that they can simulate in Simulink and generate
HDL code.

To generate HDL code from the MATLAB Function block, enter the following
command:
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makehdl('untitled');

You can rename and save the new block to use in a larger Simulink design.

Clean Up the Generated Files

You can run the following commands to clean up the temporary project folder.

mlhdlc_demo_dir = fullfile(matlabroot, 'toolbox', 'hdlcoder', 'hdlcoderdemo
mlhdlc_temp_dir = [tempdir 'mlhdlc_fir'];
clear mex;
cd (mlhdlc_demo_dir);
rmdir(mlhdlc_temp_dir, 's');
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Generate Xilinx System Generator Black Box Block

In this section...

“Requirements for System Generator Black Box Block Generation” on page
4-42

“Enable System Generator Black Box Block Generation” on page 4-42

“Results of System Generator Black Box Block Generation” on page 4-43

Requirements for System Generator Black Box Block
Generation
You must have Xilinx® ISE Design Suite 13.4 or later to generate a System
Generator Black Box block.

To verify your System Generator setup, at the command line, enter:

xlVersion

Enable System Generator Black Box Block Generation

Using the GUI
To enable System Generator Black Box block generation using the HDL
Workflow Advisor:

1 In the HDL Workflow Advisor, on the left, click Code Generation.

2 In the Advanced tab, select the Generate Xilinx System Generator
Black Box option.

3 In the Clocks & Ports tab, set the following fields:

• For Clock input port, enter clk.

• For Clock enable input port, enter ce.

• For Drive clock enable at, select DUT base rate.
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Using the Command Line
To enable System Generator Black Box block generation, at the command
line, enter:

hdlcfg = coder.config('hdl');
hdlcfg.GenerateXSGBlock = true;
hdlcfg.ClockInputPort = 'clk';
hdlcfg.ClockEnableInputPort = 'ce';
hdlcfg.EnableRate = 'DutBaseRate';

Results of System Generator Black Box Block
Generation
After you generate HDL code, you have:

• An XSG subsystem.

• A System Generator Black Box block within the XSG subsystem.

• A System Generator Black Box configuration M-function.

You can use the XSG subsystem in a Simulink model, or use the Black Box
block and Black Box configuration M-function in a Xilinx System Generator
design.

To learn more about generating a System Generator Black Box block, see
“Using Xilinx System Generator for DSP with HDL Coder” on page 18-33.
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Generate Xilinx System Generator for DSP Black Box from
MATLAB HDL Design

This example shows how to generate a Xilinx System Generator for DSP
Black Box block from a MATLAB HDL design.

Introduction

HDL Coder can generate a System Generator Black Box block and
configuration file from your MATLAB HDL design. After designing an
algorithm in MATLAB for HDL code generation, you can then integrate it into
a larger system as a Xilinx System Generator Black Box block.

HDL Coder places the generated Black Box block in a Xilinx System
Generator (XSG) subsystem. XSG subsystems work with blocks from both
Simulink and Xilinx System Generator, so you can use the generated black
box block to build a larger system for simulation and code generation.

MATLAB Design

The MATLAB code in the example implements a simple FIR filter. The
example also shows a MATLAB testbench that exercises the filter.

design_name = 'mlhdlc_fir.m';
testbench_name = 'mlhdlc_fir_tb.m';

1 Design: mlhdlc_fir

2 Test Bench: mlhdlc_fir_tb

Create a New Folder and Copy Relevant Files

Execute the following lines of code to copy the necessary example files into a
temporary folder.

mlhdlc_demo_dir = fullfile(matlabroot, 'toolbox', 'hdlcoder', 'hdlcoderdemo
mlhdlc_temp_dir = [tempdir 'mlhdlc_fir'];

% Create a temporary folder and copy the MATLAB files
cd(tempdir);
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[~, ~, ~] = rmdir(mlhdlc_temp_dir, 's');
mkdir(mlhdlc_temp_dir);
cd(mlhdlc_temp_dir);

copyfile(fullfile(mlhdlc_demo_dir, design_name), mlhdlc_temp_dir);
copyfile(fullfile(mlhdlc_demo_dir, testbench_name), mlhdlc_temp_dir);

Simulate the Design

To simulate the design with the test bench to make sure there are no runtime
errors before code generation, enter the following commannd:

mlhdlc_fir_tb

Create a New Project From the Command Line

To create a new project, enter the following command:

coder -hdlcoder -new fir_project

Next, add the file ’mlhdlc_fir.m’ to the project as the MATLAB Function and
’mlhdlc_fir_tb.m’ as the MATLAB Test Bench.

Click the Workflow Advisor button to launch the HDL Workflow Advisor.

Generate a Xilinx System Generator for DSP Black Box

To generate a Xilinx System Generator Black Box from a MATLAB HDL
design, you must have Xilinx System Generator configured. Enter the
following command to check System Generator availability:

xlVersion

In the Advanced tab of the Workflow Advisor, enable the Generate Xilinx
System Generator Black Box option:
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To generate code compatible with a Xilinx System Generator Black Box, set:

• ’Clock input port’ to ’clk’

• ’Clock enable input port’ to ’ce’

• ’Drive clock enable at’ to ’DUT base rate’

Run Fixed-Point Conversion and Generate Code
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Right-click the ’Code Generation’ step and choose the ’Run to selected task’
option to run all the steps from the beginning through HDL code generation.

Examine the Generated Model and Config File

A new model opens after HDL code generation. It contains a subsystem called
DUT at the top level.

The DUT subsystem has an XSG subsystem called SysGenSubSystem, which
contains:

• A Xilinx System Generator Black Box block

• A System Generator block

• Gateway-in blocks

• Gateway-out blocks
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Notice that in addition to the data ports, there is a reset port on the black
box interface, while ’clk’ and ’ce’ are registered to System Generator by the
Black Box configuration file.

The configuration file and your new model are saved in the same directory
with generated HDL code. You can open the configuration file by entering
the following command:

edit('codegen/mlhdlc_fir/hdlsrc/mlhdlc_fir_FixPt_xsgbbxcfg.m');
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You can now use the generated Xilinx System Generator Black Box block and
configuration file in a larger system design.
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Clean up the Generated Files

Run the following commands to clean up the temporary project folder.

mlhdlc_demo_dir = fullfile(matlabroot, 'toolbox', 'hdlcoder', 'hdlcoderdemo
mlhdlc_temp_dir = [tempdir 'mlhdlc_fir'];
clear mex;
cd (mlhdlc_demo_dir);
rmdir(mlhdlc_temp_dir, 's');
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Generate HDL Code from MATLAB Code Using the
Command Line Interface

This example shows how to use the HDL Coder™ command line interface to
generate HDL code from MATLAB code, including floating-point to fixed-point
conversion and FPGA programming file generation.

Overview

HDL code generation with the command line interface has the following
basic steps:

1 Create a ’fixpt’ coder config object. (Optional)

2 Create an ’hdl’ coder config object.

3 Set config object parameters. (Optional)

4 Run the codegen command to generate code.

The HDL Coder™ command line interface can use two coder config objects
with the codegen command. The optional ’fixpt’ coder config object configures
the floating-point to fixed-point conversion of your MATLAB code. The ’hdl’
coder config object configures HDL code generation and FPGA programming
options.

In this example, we explore different ways you can configure your
floating-point to fixed-point conversion and code generation.

The example code implements a discrete-time integrator and its test bench.

Copy the Design and Test Bench Files Into a Temporary Folder

Execute the following code to copy the design and test bench files into a
temporary folder:

close all;
design_name = 'mlhdlc_dti.m';
testbench_name = 'mlhdlc_dti_tb.m';
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mlhdlc_demo_dir = fullfile(matlabroot, 'toolbox', 'hdlcoder', 'hdlcoderdemo
mlhdlc_temp_dir = [tempdir 'mlhdlc_dti'];

cd(tempdir);
[~, ~, ~] = rmdir(mlhdlc_temp_dir, 's');
mkdir(mlhdlc_temp_dir);
cd(mlhdlc_temp_dir);

copyfile(fullfile(mlhdlc_demo_dir, design_name), mlhdlc_temp_dir);
copyfile(fullfile(mlhdlc_demo_dir, testbench_name), mlhdlc_temp_dir);

Basic Code Generation With Floating-Point to Fixed-Point Conversion

You can generate HDL code and convert the design from floating-point to
fixed-point using the default settings.

You need only your design name, ’mlhdlc_dti’, and test bench name,
’mlhdlc_dti_tb’:

close all;
fixptcfg = coder.config('fixpt'); % Create a 'fixpt' config with default se
fixptcfg.TestBenchName = 'mlhdlc_dti_tb';
hdlcfg = coder.config('hdl'); % Create an 'hdl' config with default setting

After creating ’fixpt’ and ’hdl’ config objects set up, run the following codegen
command to perform floating-point to fixed-point conversion, generate HDL
code.

codegen -float2fixed fixptcfg -config hdlcfg mlhdlc_dti

Alternatively, if your design already uses fixed-point types and functions,
you can skip fixed-point conversion:

hdlcfg = coder.config('hdl'); % Create an 'hdl' config with default setting
hdlcfg.TestBenchName = 'mlhdlc_dti_tb';
codegen -config hdlcfg mlhdlc_dti

The rest of this example describes how to configure code generation using
the ’hdl’ and ’fixpt’ objects.

Create a Floating-Point to Fixed-Point Conversion Config Object
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To perform floating-point to fixed-point conversion, you need a ’fixpt’ config
object.

Create a ’fixpt’ config object and specify your test bench name:

close all;
fixptcfg = coder.config('fixpt');
fixptcfg.TestBenchName = 'mlhdlc_dti_tb';

Set Fixed-Point Conversion Type Proposal Options

The coder can propose fixed-point types based on your choice of either word
length or fraction length. These two options are mutually exclusive.

Base the proposed types on a word length of 24:

fixptcfg.DefaultWordLength = 24;
fixptcfg.ProposeFractionLengthsForDefaultWordLength = true;

Alternatively, you can base the proposed fixed-point types on fraction length.
The following code configures the coder to propose types based on a fraction
length of 10:

fixptcfg.DefaultFractionLength = 10;
fixptcfg.ProposeWordLengthsForDefaultFractionLength = true;

Set the Safety Margin

The coder increases the simulation data range on which it bases its fixed-point
type proposal by the safety margin percentage. For example, the default
safety margin is 4, which increases the simulation data range used for
fixed-point type proposal by 4%.

Set the SafetyMargin to 10%:

fixptcfg.SafetyMargin = 10;

Enable Data Logging
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The coder runs the test bench with the design before and after floating-point
to fixed-point conversion. You can enable simulation data logging to plot the
data differences introduced by fixed-point conversion.

Enable data logging in the ’fixpt’ config object:

fixptcfg.LogIOForComparisonPlotting = true;

View the Numeric Type Proposal Report

Configure the coder to launch the type proposal report after the coder has
proposed fixed-point types:

fixptcfg.LaunchNumericTypesReport = true;

Specify a Type For a Design Variable

If you want to specify the fixed-point data type for a variable in your design,
you can create a type specification, set its fields, and associate it with the
variable.

The type specification has the following fields:

• IsInteger: Can be true or false

• ProposedType: A type string, like ’ufix15’ or ’int32’.

• RoundingMethod: Can be ’ceil’, ’convergent’, ’fix’, ’floor’, ’nearest’, or ’round’.

• OverflowAction: Can be ’saturate’ or ’wrap’.

Create a type specification and associate it with the ’delayed_xout’ variable:

% Create a type specification object.
%
% typeSpec = coder.FixPtTypeSpec;

% Set fields in the typeSpec object.
%
% typeSpec.ProposedType = 'ufix15';
% typeSpec.RoundingMethod = 'nearest';
% typeSpec.OverflowAction = 'saturate';
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% Associate the type specification with the variable, 'yt'.
%fixptcfg.addTypeSpecification('mlhdlc_dti', 'yt', typeSpec)

Create an HDL Code Generation Config Object

To generate code, you must create an ’hdl’ config object and set your test
bench name:

hdlcfg = coder.config('hdl');
hdlcfg.TestBenchName = 'mlhdlc_dti_tb';

Set the Target Language

You can generate either VHDL or Verilog code. The coder generates VHDL
code by default.

To generate Verilog code:

hdlcfg.TargetLanguage = 'Verilog';

Generate HDL Test Bench Code

Generate an HDL test bench from your MATLAB test bench:

hdlcfg.GenerateHDLTestBench = true;

Simulate the Generated HDL Code Using an HDL Simulator

If you want to simulate your generated HDL code using an HDL simulator,
you must also generate the HDL test bench.

Enable HDL simulation and use the ModelSim simulator:

hdlcfg.SimulateGeneratedCode = true;

hdlcfg.SimulationTool = 'ModelSim'; % or 'ISIM'

Generate an FPGA Programming File
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You can generate an FPGA programming file if you have a synthesis tool
set up.

Enable synthesis, specify a synthesis tool, and specify an FPGA:

% Enable Synthesis.
hdlcfg.SynthesizeGeneratedCode = true;

% Configure Synthesis tool.
hdlcfg.SynthesisTool = 'Xilinx ISE'; % or 'Altera Quartus II';
hdlcfg.SynthesisToolChipFamily = 'Virtex7';
hdlcfg.SynthesisToolDeviceName = 'xc7vh580t';
hdlcfg.SynthesisToolPackageName = 'hcg1155';
hdlcfg.SynthesisToolSpeedValue = '-2G';

Run Code Generation

Now that you have your ’fixpt’ and ’hdl’ config objects set up, run the codegen
command to perform floating-point to fixed-point conversion, generate HDL
code, and generate an FPGA programming file:

codegen -float2fixed fixptcfg -config hdlcfg mlhdlc_dti
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Specify the Clock Enable Rate

In this section...

“Why Specify the Clock Enable Rate?” on page 4-57

“How to Specify the Clock Enable Rate” on page 4-57

Why Specify the Clock Enable Rate?
When the coder performs area optimizations, it might upsample parts of
your design (DUT), and thereby introduce an increase in your required DUT
clock frequency.

If the coder upsamples your design, it generates a message indicating the
ratio between the new clock frequency and your original clock frequency. For
example, the following message indicates that your design’s new required
clock frequency is 4 times higher than the original frequency:

The design requires 4 times faster clock with respect to the base rate = 1

This frequency increase introduces a rate mismatch between your input clock
enable and output clock enable, because the output clock enable runs at the
slower original clock frequency.

With the Drive clock enable at option, you can choose whether to drive the
input clock enable at the faster rate (DUT base rate) or at a rate that is less
than or equal to the original clock enable rate (Input data rate).

How to Specify the Clock Enable Rate
1 In the HDL Workflow Advisor, select MATLAB to HDL Workflow >
Code Generation. Click the Clocks & Ports tab.

2 For the Drive clock enable at option, select Input data rate or DUT
base rate.
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Drive clock enable at Option Clock Enable Behavior

Input data rate (default) Each assertion of the input clock
enable produces an output clock
enable assertion.

You can assert the input clock
enable at a maximum rate of once
every N clocks. N = the upsampled
clock rate / original clock rate.

For example, if you see the
message, “The design requires
4 times faster clock with
respect to the base rate = 1”,
your maximum input clock enable
rate is once every 4 clocks.

DUT base rate Input clock enable rate does not
match the output clock enable rate.
You must assert the input clock
enable with your input data N
times to get 1 output clock enable
assertion. N = the upsampled clock
rate / original clock rate.

For example, if you see the
message, “The design requires
4 times faster clock with
respect to the base rate = 1”,
you must assert the input clock
enable 4 times to get 1 output clock
enable assertion.
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Specify Test Bench Clock Enable Toggle Rate

In this section...

“When to Specify Test Bench Clock Enable Toggle Rate” on page 4-59

“How to Specify Test Bench Clock Enable Toggle Rate” on page 4-59

When to Specify Test Bench Clock Enable Toggle Rate
When you want the test bench to drive your input data at a slower rate than
the maximum input clock enable rate, specify the test bench clock enable
toggle rate.

This specification can help you to achieve better test coverage, and to simulate
the real world input data rate.

Note The maximum input clock enable rate is once every N clock cycles. N
= the upsampled clock rate / original clock rate. Refer to the clock enable
behavior for Input data rate, in “Specify the Clock Enable Rate” on page
4-57.

How to Specify Test Bench Clock Enable Toggle Rate
To set your test bench clock enable toggle rate:

1 In the HDL Workflow Advisor, select MATLAB to HDL Workflow >
Code Generation.

2 In the Clocks & Ports tab, for the Drive clock enable at option, select
Input data rate.

3 In the Test Bench tab, for Input data interval, enter 0 or an integer
greater than the maximum input clock enable interval.
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Input data interval, I Test Bench Clock Enable
Behavior

I = 0 (default) Asserts at the maximum input
clock enable rate, or once every N
cycles. N = the upsampled clock
rate / original clock rate.

I < N Not valid; generates an error.

I = N Same as I = 0.

I > N Asserts every I clock cycles.

For example, this timing diagram shows clock enable behavior with Input
data interval = 0. Here, the maximum input clock enable rate is once every
2 cycles.

The following timing diagram shows the same test bench and DUT with
Input data interval = 3.
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Generate an HDL Coding Standard Report

In this section...

“Using the HDL Workflow Advisor” on page 4-61

“Using the Command Line” on page 4-61

To learn more about the HDL coding standard report, see “HDL Coding
Standard Report” on page 17-2.

Using the HDL Workflow Advisor
To generate an HDL coding standard report using the HDL Workflow Advisor:

1 In the HDL Code Generation task, select the Coding Style tab.

2 For HDL coding standard, select Industry.

3 Click Run to generate code.

After you generate code, the message window shows a link to the HTML
compliance report.

Using the Command Line
To generate an HDL coding standard report using the command line interface,
set the HDLCodingStandard property to Industry in the coder.HdlConfig
object.

For example, to generate HDL code and an HDL coding standard report for a
design, mlhdlc_sfir, with a testbench, mlhdlc_sfir_tb, enter the following
commands:

hdlcfg = coder.config('hdl');
hdlcfg.TestBenchName = 'mlhdlc_sfir_tb';
hdlcfg.HDLCodingStandard='Industry';
codegen -config hdlcfg mlhdlc_sfir

### Generating Resource Utilization Report resource_report.html
### Generating default Industry script file mlhdlc_sfir_mlhdlc_sfir_default
### Industry Compliance report with 0 errors, 8 warnings, 4 messages.
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### Generating Industry Compliance Report mlhdlc_sfir_Industry_report.html

To open the report, click the report link.
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Generate an HDL Lint Tool Script
You can generate a lint tool script to use with a third-party lint tool to check
your generated HDL code. The coder can generate the following lint tool
script file formats:

• Leda

• SpyGlass

• Custom

You can further customize the script with initialization, termination, and
command strings.

How To Generate an HDL Lint Tool Script

Using the HDL Workflow Advisor
1 In the HDL Workflow Advisor, select the HDL Code Generation task.

2 In the Script Options tab, select Lint.

3 For Choose lint tool, select SpyGlass, Leda, or Custom.

4 Enter text to customize the Lint script initialization, Lint script
command, and Lint script termination fields.

After you generate code, the command window shows a link to the lint tool
script.

Using the Command Line
To generate an HDL lint tool script from the command line, set the
HDLLintTool property to Leda, SpyGlass or Custom in your coder.HdlConfig
object.

To disable HDL lint tool script generation, set the HDLLintTool property
to None.
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For example, to generate a SpyGlass lint script using a coder.HdlConfig
object, hdlcfg, enter:

hdlcfg.HDLLintTool = 'SpyGlass';

After you generate code, the command window shows a link to the lint tool
script.

To generate an HDL lint tool script with custom initialization, termination,
and command strings, use the HDLLintTool, HDLLintInit, HDLLintTerm,
and HDLLintCmd properties.

For example, you can use the following command to generate a custom LEDA
lint script for a DUT subsystem, sfir_fixed\symmetric_fir, with custom
initialization, termination, and command strings:

hdlcfg.HDLLintTool = 'Leda';
hdlcfg.HDLLintInit = 'myInitialization';
hdlcfg.HDLLintTerm = 'myTermination';
hdlcfg.HDLLintCmd = 'myCommand';

After you generate code, the command window shows a link to the lint tool
script.
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Verify Code with HDL Test Bench
Simulate the generated HDL design under test (DUT) with test vectors from
the test bench using the specified simulation tool.

1 Start the MATLAB to HDL Workflow Advisor.

2 At step HDL Verification, click Verify with HDL Test Bench.

3 Select Generate HDL test bench.
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This option enables HDL Coder to generate HDL test bench code from
your MATLAB test script.

4 Optionally, select Simulate generated HDL test bench. This option
enables MATLAB to simulate the HDL test bench with the HDL DUT.

If you select this option, you must also select the Simulation tool.

5 For Test Bench Options, select and set the optional parameters according
to the descriptions in the following table.

HDL Test Bench Parameter Description

Test bench name postfix Specify the postfix for the test
bench name.

Force clock Enable for test bench to force clock
input signals.

Clock high time (ns) Specify the number of nanoseconds
the clock is high.

Clock low time (ns) Specify the number of nanoseconds
the clock is low.

Hold time (ns) Specify the hold time for input
signals and forced reset signals.

Force clock enable Enable to force clock enable.

Clock enable delay (in clock
cycles)

Specify time (in clock cycles)
between deassertion of reset and
assertion of clock enable.

Force reset Enable for test bench to force reset
input signals.

Reset length (in clock cycles) Specify time (in clock cycles)
between assertion and deassertion
of reset.

Hold input data between
samples

Enable to hold subrate signals
between clock samples.
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HDL Test Bench Parameter Description

Input data interval Specifies the number of clock cycles
between assertions of clock enable.
For more information, see “Specify
Test Bench Clock Enable Toggle
Rate” on page 4-59.

Initialize test bench inputs Enable to initialize values on
inputs to test bench before test
bench drives data to DUT.

Multi file test bench Enable to divide generated test
bench into helper functions, data,
and HDL test bench code.

Test bench data file name
postfix

Specify the string to append to
name of test bench data file when
generating multi-file test bench.

Test bench reference postfix Specify the string to append to
names of reference signals in test
bench code.

Ignore data checking (number
of samples)

Specify the number of samples at
the beginning of simulation during
which output data checking is
suppressed.

Simulation iteration limit Specify the maximum number
of test samples to use during
simulation of generated HDL code.

6 Optionally, select Skip this step if you don’t want to use the HDL test
bench to verify the HDL DUT.

7 Click Run.

If the test bench and simulation is successful, you should see messages
similar to these in the message pane:

### Begin TestBench generation.
### Collecting data...
### Begin HDL test bench file generation with logged samples
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### Generating test bench: mlhdlc_sfir_fixpt_tb.vhd
### Creating stimulus vectors...
### Simulating the design 'mlhdlc_sfir_fixpt' using 'ModelSim'.
### Generating Compilation Report mlhdlc_sfir_fixpt_vsim_log_compile.txt
### Generating Simulation Report mlhdlc_sfir_fixpt_vsim_log_sim.txt
### Simulation successful.
### Elapsed Time: 113.0315 sec(s)

If there are errors, those messages appear in the message pane. Fix errors
and click Run.
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Generate Test Bench With File I/O

In this section...

“When to Use File I/O In Test Bench” on page 5-6

“How Test Bench Generation with File I/O Works” on page 5-6

“Test Bench Data Files” on page 5-7

“How to Generate Test Bench with File I/O” on page 5-7

“Limitations When Using File I/O In Test Bench” on page 5-7

When to Use File I/O In Test Bench
By default, the coder generates an HDL testbench that contains the
simulation data as constants. If you have a long running simulation, the
generated HDL test bench contains a large amount of data, and therefore
requires more memory to run in an HDL simulator.

Generate your test bench with file I/O when your MATLAB or Simulink
simulation is long, or you experience memory constraints while running your
HDL simulation.

How Test Bench Generation with File I/O Works
By default, when you generate an HDL test bench, the coder writes the
stimulus and reference data from your simulation as constants in the test
bench code.

When you enable the Use file I/O to read/write test bench data option in
the HDL Workflow Advisor and generate a test bench, the coder saves the
DUT input and output data from your MATLAB or Simulink simulation to
data files (.dat).

During HDL simulation, the HDL test bench reads the saved stimulus from
the .dat files and compares the actual DUT output with the expected output,
which is also saved in .dat files. This saves memory compared to the default
option.
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Note that reference data is delayed by 1 clock cycle in the waveform viewer
compared to default test bench generation. This is due to the delay in reading
data from files.

Test Bench Data Files
Stimulus and reference data for each DUT input and output is saved in a
separate test bench data file (.dat), with the following exceptions:

• 2 files are generated for the real and imaginary parts of complex data.

• Constant DUT input data is written to the test bench as constants, the
same as for the default option.

Vector input or output data is saved as a single file.

How to Generate Test Bench with File I/O
To create and use data files for reading and writing test bench input and
output data:

1 In the HDL Workflow Advisor, select the HDL Verification > Verify
with HDL Test Bench task.

2 In the Test bench Options tab, enable the Use file I/O for test bench
option.

Limitations When Using File I/O In Test Bench
To use file I/O in your test bench, the following limitations apply:

• Double and single data types at DUT inputs and outputs are not supported.

• If your target language is VHDL, the Scalarize vector ports option must
be off.
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• “Program Standalone FPGA with FPGA Turnkey Workflow” on page 6-2

• “Hardware and Software Codesign for Xilinx Zynq-7000 Platform” on
page 6-7
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• “Generate Synthesis Scripts” on page 6-17
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Program Standalone FPGA with FPGA Turnkey Workflow

In this section...

“Before You Begin” on page 6-2

“Create a Project” on page 6-2

“Convert Design To Fixed-Point” on page 6-3

“Map Design Ports to Target Interface” on page 6-3

“Generate Programming File and Download To Hardware” on page 6-5

This example shows how to program a standalone FPGA with your MATLAB
design, using the FPGA Turnkey workflow.

The target device in this example is a Xilinx Virtex-5 ML506 development
board, but you can use this workflow with other Altera® or Xilinx FPGAs. For
a list of supported devices, see “FPGA Turnkey Hardware”.

Before You Begin
To use the FPGA Turnkey workflow, you must:

• Have your synthesis tool path set up. To learn how to setup your synthesis
tool path, see “Synthesis Tool Path Setup”.

• Connect the target device if you want to program it immediately. If the
target device is not connected, you can still generate the programming file.

Create a Project
1 Create a new folder to hold your project files.

2 At the MATLAB command line, open the design and test bench files:

edit mlhdlc_turnkey_led_blinking.m
edit mlhdlc_turnkey_led_blinking_tb.m

3 Save copies of the design and test bench files to your new project folder.

4 Change directory to your new project folder.
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5 At the MATLAB command line, enter:

hdlcoder

The project creation pane opens.

6 For Name, enter myproject.prj and click OK.

7 Under MATLAB Function, click Add MATLAB Function and select
mlhdlc_turnkey_led_blinking.m.

8 Under MATLAB Test Bench, click Add files and select
mlhdlc_turnkey_led_blinking_tb.m.

9 Click theWorkflow Advisor button to open the HDL Workflow Advisor.

Convert Design To Fixed-Point
1 Right-click the Define Input Types task and select Run This Task.

2 In the Fixed-Point Conversion task, click Advanced and set the Safety
margin for sim min/max (%) to 0.

3 On the left, right-click the Fixed-Point Conversion task and select Run
This Task.

Map Design Ports to Target Interface
In the Select Code Generation Target task, select the FPGA Turnkey
workflow and Xilinx Virtex-5 ML506 development board as follows:

1 For Workflow, select FPGA Turnkey.

2 For Platform, select Xilinx Virtex-5 ML506 development board. If
your target device is not in the list, select Get more to download the
support package.

The coder automatically sets Chip family, Device, Package, and Speed
according to your platform selection.

3 For FPGA clock frequency, for both Input and System, enter 100.

6-3



6 Deployment

4 In the Set Target Interface task, map the design input and output
ports to interfaces on the target devicby setting the fields in the Target
Platform Interfaces column as follows:

• Blink_frequency_1 to User Push Buttons N-E-S-W-C [0:4]

• Blink_direction to User Push Buttons N-E-S-W-C [0:4]

• LED to LEDs General Purpose [0:7]
You can leave the Read_back port unmapped.
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The HDL Workflow Advisor applies your settings immediately.

Generate Programming File and Download To
Hardware
You can generate code, perform synthesis and analysis, and download the
design to the target hardware using the default settings:

1 For the Synthesis and Analysis task group, uncheck the Skip this Step
option.

2 For the Download to Target task group, uncheck the Skip this Step
option.
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3 Right-click Download to Target > Generate Programming File and
select Run to Selected Task.

4 If your target hardware is connected and ready to program, select the
Program Target Device subtask and click Run.
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Hardware and Software Codesign for Xilinx Zynq-7000
Platform

For an example that shows the hardware and software codesign workflow for
the Xilinx Zynq®-7000 Platform, see mlhdlc_tutorial_ip_core_led_blinking.

The example shows how to:

• Set up your Zynq hardware.

• Generate an IP core for your MATLAB design.

• Include the embedded software.

• Integrate hardware and software in an EDK project and program the
Xilinx Zynq All Programmable SoC.
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Hardware and Software Codesign Workflow
The hardware and software codesign workflow helps automate the deployment
of your MATLAB and Simulink design to a Zynq-7000 All Programmable
SoC. You can explore the best ways to partition and deploy your design by
iterating through the following workflow.
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1 MATLAB and Simulink Algorithm and System Design: You begin by
implementing your design in MATLAB or Simulink. When the design
behavior meets your requirements, decide how to partition your design:
which parts you want to run in hardware, and which parts you want to
run in embedded software.
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2 HDL IP Core Generation: Enclose the hardware part of your design in an
atomic Subsystem block, and use the HDL Workflow Advisor to define and
generate an HDL IP core. For more information, see “Custom IP Core
Generation” on page 22-65.

The following diagram shows a model that has been partitioned into
a hardware part, in orange, and software part, in blue. HDL IP core
generation creates an IP core from the hardware part of the model.
The IP core hardware interface includes components such as AXI4-Lite
interface-accessible registers, AXI4-Lite interfaces, AXI4-Stream Video
interfaces, and external ports.
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3 Embedded System Tool Integration: As part of the HDL Workflow Advisor
IP core generation workflow, you insert your generated IP core into a
reference design, and generate an FPGA bitstream for the Zynq hardware.

The reference design is a predefined EDK project. It contains all the
elements the Xilinx software needs to deploy your design to the Zynq
platform, except for the custom IP core and embedded software that you
generate.

The following diagram shows the relationship between the reference
design, in green, and the generated IP core, in orange.
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4 SW Interface Model Generation (requires a Simulink license): In the HDL
Workflow Advisor, after you generate the IP core and insert it into the
reference design, you can optionally generate a software interface model.
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The software interface model is your original model with AXI driver blocks
replacing the hardware part. If you have an Embedded Coder® license, you
can automatically generate embedded code from the software interface
model, build it, and run the executable on the Linux® kernel on the ARM®

processor. The generated embedded software includes AXI driver code,
generated from the AXI driver blocks, that controls the HDL IP core.

If you do not have an Embedded Coder license or Simulink license, you can
write the embedded software and manually build it for the ARM processor.

The following diagram shows the difference between the original model
and the software interface model.
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5 Zynq Platform and External Mode PIL: Using the HDL Workflow Advisor,
you program your FPGA bitstream to the Zynq platform. You can then run
the software interface model in external mode, or processor-in-the-loop
(PIL) mode, to test your deployed design.
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If your deployed design does not meet your design requirements,
you can repeat the workflow with a modified model, or a different
hardware-software partition.

6-16



Generate Synthesis Scripts

Generate Synthesis Scripts
You can generate customized synthesis scripts for the following tools:

• Xilinx ISE

• Microsemi Libero

• Mentor Graphics® Precision

• Altera Quartus II

• Synopsys® Synplify Pro®

You can also generate a synthesis script for a custom tool by specifying the
fields manually.

To generate a synthesis script:

1 In the HDL Workflow Advisor, select the HDL Code Generation task.

2 In the Script Options tab, select Synthesis.

3 For Choose synthesis tool, select a tool option.

4 If you want to customize your script, use the Synthesis file postfix,
Synthesis initialization, Synthesis command, and Synthesis
termination text fields to do so.

After you generate code, your synthesis script (.tcl) is in the same folder
as your generated HDL code.

6-17



6 Deployment

Install Support for Altera FPGA Boards
You can use the HDL Coder FPGA Turnkey workflow with Altera FPGA
boards by installing the related support package.

To install the HDL Coder Support Package for Altera FPGA Boards
from the HDL Workflow Advisor:

1 In the Select Code Generation Target task, for Workflow, select
FPGA Turnkey.

2 For Platform, select Get more boards to open the Support Package
Installer.

3 In the Support Package Installer, select Altera FPGA Boards and follow
the instructions provided by Support Package Installer to complete the
installation.
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Install Support for Xilinx FPGA Boards
You can use the HDL Coder FPGA Turnkey workflow with Xilinx FPGA
boards by installing the related support package.

To install the HDL Coder Support Package for Xilinx FPGA Boards
from the HDL Workflow Advisor:

1 In the Select Code Generation Target task, for Workflow, select
FPGA Turnkey.

2 For Platform, select Get more boards to open the Support Package
Installer.

3 In the Support Package Installer, select Xilinx FPGA Boards and follow
the instructions provided by Support Package Installer to complete the
installation.
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Install Support for Xilinx Zynq-7000 Platform
You can use the HDL Coder IP core generation workflow with the Xilinx
Zynq-7000 Platform by installing the related support package.

To install the HDL Coder Support Package for Xilinx Zynq-7000
Platform from the HDL Workflow Advisor:

1 In the Select Code Generation Target task, for Workflow, select IP
Core Generation.

2 For Platform, select Get more to open the Support Package Installer.

3 In the Support Package Installer, select Xilinx Zynq-7000 and follow
the instructions provided by Support Package Installer to complete the
installation.
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RAM Mapping
RAM mapping is an area optimization that maps storage and delay elements
in your MATLAB code to RAM. Without this optimization, storage and delay
elements are mapped to registers. RAM mapping can therefore reduce the
area of your design in the target hardware.

You can map the following MATLAB code elements to RAM:

• persistent array variable

• dsp.Delay System object

• hdlram System object
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Map Persistent Arrays and dsp.Delay to RAM

In this section...

“How To Enable RAM Mapping” on page 7-3

“RAM Mapping Requirements for Persistent Arrays” on page 7-4

“RAM Mapping Requirements for dsp.Delay System Objects” on page 7-7

How To Enable RAM Mapping
1 In the HDL Workflow Advisor, select MATLAB to HDL Workflow >
Code Generation > Optimizations tab.

2 Select the Map persistent array variables to RAMs option.

3 Set the RAM mapping threshold to the size (in bits) of the smallest
persistent array or dsp.Delay that you want to map to RAM.
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RAM Mapping Requirements for Persistent Arrays
A summary of the mapping behavior for persistent arrays is in the following
table.

7-4



Map Persistent Arrays and dsp.Delay to RAM

Map Persistent
Array Variables to
RAMs Setting

Mapping Behavior

on A persistent array maps to a block RAM when all
of the following conditions are true:

• Each read or write access is for a single element
only. For example, submatrix access is not
allowed.

• Address computation logic is not read
dependent. For example, computation of a read
or write address using the data read from the
array is not allowed.

• If an access is within a conditional statement,
the conditional statement uses only simple logic
expressions (&&, ||, ~) or relational operators.
For example, in the following code, r1 does not
map to RAM:

if (mod(i,2) > 0)
a = r1(u);

else
r1(i) = u;

end

Rewrite complex conditions, such as conditions
that call functions, by assigning them to
temporary variables, and using the temporary
variables in the conditional statement. For
example, to map r1 to RAM, rewrite the
previous code as follows:

temp = mod(i,2);
if (temp > 0)

a = r1(u);
else

r1(i) = u;
end
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Map Persistent
Array Variables to
RAMs Setting

Mapping Behavior

• The persistent array value depends on external
inputs.

For example, in the following code, bigarray
does not map to RAM because it does not depend
on u:

function z = foo(u)

persistent cnt bigarray
if isempty(cnt)

cnt = fi(0,1,16,10,hdlfimath);
bigarray = uint8(zeros(1024,1));

end
z = u + cnt;
idx = uint8(cnt);
temp = bigarray(idx+1);
cnt(:) = cnt + fi(1,1,16,0,hdlfimath) + temp;
bigarray(idx+1) = idx;

• RAMSize is greater than or equal to the RAM
Mapping Threshold value. RAMSize is
the product NumElements * WordLength *
Complexity.

- NumElements is the number of elements in
the array.

- WordLength is the number of bits that
represent the data type of the array.

- Complexity is 2 for complex signals; 1
otherwise.
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Map Persistent
Array Variables to
RAMs Setting

Mapping Behavior

If any of the conditions are false, the persistent
array maps to registers in the HDL code.

off Persistent arrays map to registers in the generated
HDL code.

RAM Mapping Requirements for dsp.Delay System
Objects
A summary of the mapping behavior for a dsp.Delay System object is in the
following table.

Map Persistent
Array Variables to
RAMs Option

Mapping Behavior

on A dsp.Delay System object maps to a block RAM
when all of the following conditions are true:

• Length property is greater than 4.

• InitialConditions property is 0.

• Delay input data type is one of the following:

- Real scalar with a non-floating-point data
type.

- Complex scalar with real and imaginary
parts that are non-floating-point.

- Vector where each element is either a
non-floating-point real scalar or complex
scalar.

• RAMSize is greater than or equal to the RAM
Mapping Threshold value.
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Map Persistent
Array Variables to
RAMs Option

Mapping Behavior

- RAMSize is the product Length *
InputWordLength.

- InputWordLength is the number of bits that
represent the input data type.

If any of the conditions are false, the dsp.Delay
System object maps to registers in the HDL code.

off A dsp.Delay System object maps to registers in
the generated HDL code.
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RAM Mapping Comparison for MATLAB Code
hdlram, dsp.Delay, and persistent array variables can map to RAM, but have
different attributes. The following table summarizes the differences.

Attribute hdlram dsp.Delay Persistent
Arrays

RAM mapping
criteria

Unconditionally
maps to RAM

Maps to RAM
in HDL code
under specific
conditions. See
“RAM Mapping
Requirements
for dsp.Delay
System Objects”
on page 7-7.

Maps to RAM
in HDL code
under specific
conditions. See
“RAM Mapping
Requirements
for Persistent
Arrays” on page
7-4.

Address
generation and
port mapping

User specified Automatic Automatic

Access
scheduling

User specified Automatically
inferred

Automatically
inferred

Overclocking None None Local multirate
if access schedule
requires it.

Latency with
respect to
simulation in
MATLAB.

0 0 2 cycles if local
multirate; 1 cycle
otherwise.

RAM type User specified Dual port Dual port
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Pipelining
Pipelining helps achieve a higher maximum clock rate by inserting registers
at strategic points to break the critical path. However, the higher clock rate
comes at the expense of increased chip area and increased initial latency.

Port Registers
Input and output port registers for modules help partition a larger design so
the critical path does not extend across module boundaries. Having a port
register at each input and output port is considered good design practice
for synchronous interfaces.

Port registers are not affected by distributed pipelining.

To learn how to insert port registers, see “Register Inputs and Outputs” on
page 7-11.

Input and Output Pipeline Registers
You can insert multiple input and output pipeline stages. These input and
output pipeline registers can move during distributed pipelining to help
reduce your critical path within the module.

If you insert input and output pipeline stages without applying distributed
pipelining, the registers stay at the DUT inputs and outputs.

To learn how to insert input and output pipeline registers, see “Insert Input
and Output Pipeline Registers” on page 7-12.

Variable Pipelining
Variable pipelining inserts a register at the output of a specific variable in
your MATLAB code. If you know a specific variable is part of the critical
path, you can add a pipeline register at the output of that variable to reduce
your critical path.

To learn how to insert a pipeline register at the output of a variable, see
“Pipeline MATLAB Variables” on page 7-14.
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Register Inputs and Outputs
To insert input or output port registers:

1 In the HDL Workflow Advisor, select the HDL Code Generation task
and select the Optimizations tab.

2 Enable Register inputs, Register outputs, or both.

To learn more about input and output port registers, see “Port Registers”
on page 7-10.
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Insert Input and Output Pipeline Registers
To insert input or output pipeline register stages:

1 In the HDL Workflow Advisor, select the HDL Code Generation task
and select the Optimizations tab.

2 For Input pipelining, Output pipelining, or both, enter the number
of pipeline register stages.

To learn more about input and output pipeline registers, see “Input and
Output Pipeline Registers” on page 7-10.
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Distributed Pipelining

In this section...

“What is Distributed Pipelining?” on page 7-13

“Benefits and Costs of Distributed Pipelining” on page 7-13

“Selected Bibliography” on page 7-13

What is Distributed Pipelining?
Distributed pipelining, or register retiming, is a speed optimization that
moves existing delays within in a design to reduce the critical path while
preserving functional behavior.

The coder uses an adaptation of the Leiserson-Saxe retiming algorithm.

Benefits and Costs of Distributed Pipelining
Distributed pipelining can reduce your design’s critical path, enabling you to
use a higher clock rate and increase throughput.

However, distributed pipelining requires your design to contain a number
of delays. If you need to insert additional delays in your design to enable
distributed pipelining, this increases the area and the initial latency of your
design.

Selected Bibliography
Leiserson, C.E, and James B. Saxe. “Retiming Synchronous Circuitry.”
Algorithmica. Vol. 6, Number 1, 1991, pp. 5-35.
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Pipeline MATLAB Variables

In this section...

“Using the HDL Workflow Advisor” on page 7-14

“Using the Command Line Interface” on page 7-14

“Limitations of MATLAB Variable Pipelining” on page 7-14

You can insert a pipeline register at the output of a specific MATLAB variable.

To learn more about pipelining, see “Pipelining” on page 7-10.

Using the HDL Workflow Advisor
To pipeline MATLAB variables from the HDL Workflow Advisor:

1 In the HDL Code Generation task, open the Optimizations tab.

2 In the Pipeline variables field, enter MATLAB variable names for which
you want the coder to insert an output register. Separate variable names
with a space.

Using the Command Line Interface
To pipeline MATLAB variables, set the PipelineVariables property of your
'hdl' coder config object.

For example, if you have an 'hdl' coder config object, cfg, pipeline the
variables v1, v2, and v3 by entering the following at the command line:

cfg.PipelineVariables = 'v1 v2 v3'

Limitations of MATLAB Variable Pipelining
The coder cannot insert a pipeline register for a MATLAB variable if it is:

• In a conditional statement or loop.

• A persistent variable that maps to a state element, like a state register
or RAM.
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• An output of a function. For example, in the following code, you cannot use
variable pipelining to add a pipeline register for y:

function [y] = myfun(x)
y = x + 5;
end

• In a data feedback loop. For example, in the following code, the t and pvar
variables cannot be pipelined:

persistent pvar;
t = u + pvar;
pvar = t + v;
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Optimize MATLAB Loops

In this section...

“How to Optimize MATLAB Loops” on page 7-16

“Limitations for MATLAB Loop Optimization” on page 7-16

How to Optimize MATLAB Loops
To select a loop optimization in the Workflow Advisor:

1 Open the Workflow Advisor.

2 In the left pane, selectMATLAB HDL Coder Workflow > MATLAB to
HDL Workflow > Code Generation.

3 Select the Optimizations tab.

4 For Loop Optimizations, select None, Unroll Loops, or Stream Loops.

To learn more about loop streaming and loop unrolling, see “Loop
Optimization” on page 15-41.

Limitations for MATLAB Loop Optimization
The coder cannot stream a loop if:

• The loop index counts down. The loop index must increase by 1 on each
iteration.

• There are 2 or more nested loops at the same level of hierarchy within
another loop.

• Any particular persistent variable is updated both inside and outside a loop.

The coder can stream a loop when the persistent variable is:

• Updated inside the loop and read outside the loop.

• Read within the loop and updated outside the loop.
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Constant Multiplier Optimization
The Constant multiplier optimization option enables you to specify use
of canonic signed digit (CSD) or factored CSD (FCSD) optimizations for
processing coefficient multiplier operations.

The following table shows the Constant multiplier optimization values.

Constant Multiplier
Optimization Value

Description

None (default) By default, the coder does not perform CSD or
FCSD optimizations. Code generated for the Gain
block retains multiplier operations.

CSD When you specify this option, the generated
code decreases the area used by the model while
maintaining or increasing clock speed, using
canonic signed digit (CSD) techniques. CSD
replaces multiplier operations with add and
subtract operations.

CSD minimizes the number of addition
operations required for constant multiplication by
representing binary numbers with a minimum
count of nonzero digits.

FCSD This option uses factored CSD (FCSD) techniques,
which replace multiplier operations with shift
and add/subtract operations on certain factors of
the operands. These factors are generally prime
but can also be a number close to a power of 2,
which favors area reduction.

This option lets you achieve a greater area
reduction than CSD, at the cost of decreasing
clock speed.

Auto When you specify this option, the coder chooses
between the CSD or FCSD optimizations. The
coder chooses the optimization that yields the
most area-efficient implementation, based on the
number of adders required.
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Constant Multiplier
Optimization Value

Description

The coder does not use multipliers, unless
conditions are such that CSD or FCSD
optimizations are not possible (for example, if the
design uses floating-point arithmetic).

To learn how to specify constant multiplier optimization, see “Specify
Constant Multiplier Optimization” on page 7-19.
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Specify Constant Multiplier Optimization
To specify constant multiplier optimization:

1 In the HDL Workflow Advisor, select the HDL Code Generation task
and select the Optimizations tab.

2 For Constant multiplier optimization, select CSD, FCSD, or Auto.

To learn more about the constant multiplier optimization options, see
“Constant Multiplier Optimization” on page 7-17.
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Distributed Pipelining for Clock Speed Optimization
This example shows how to use the distributed pipelining and loop unrolling
optimizations in HDL Coder to optimize clock speed.

Introduction

Distributed pipelining is a design-wide optimization supported by HDL Coder
for improving clock frequency. When you turn on the ’Distribute Pipeline
Registers’ option in HDL Coder, the coder redistributes the input and output
pipeline registers of the top level function along with other registers in the
design in order to minimize the combinatorial logic between registers and
thus maximize the clock speed of the chip synthesized from the generated
HDL code.

Consider the following example design of a FIR filter. The combinatorial
logic from an input or a register to an output or another register contains a
sum of products. Loop unrolling and distributed pipelining moves the output
registers at the design level to reduce the amount of combinatorial logic, thus
increasing clock speed.

MATLAB Design

The MATLAB code used in the example is a simple FIR filter. The example
also shows a MATLAB test bench that exercises the filter.

design_name = 'mlhdlc_fir.m';
testbench_name = 'mlhdlc_fir_tb.m';

1 Design: mlhdlc_fir

2 Test Bench: mlhdlc_fir_tb

Create a New Folder and Copy Relevant Files

Execute the following lines of code to copy the necessary example files into a
temporary folder.

mlhdlc_demo_dir = fullfile(matlabroot, 'toolbox', 'hdlcoder', 'hdlcoderdemo
mlhdlc_temp_dir = [tempdir 'mlhdlc_fir'];
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% create a temporary folder and copy the MATLAB files
cd(tempdir);
[~, ~, ~] = rmdir(mlhdlc_temp_dir, 's');
mkdir(mlhdlc_temp_dir);
cd(mlhdlc_temp_dir);

copyfile(fullfile(mlhdlc_demo_dir, design_name), mlhdlc_temp_dir);
copyfile(fullfile(mlhdlc_demo_dir, testbench_name), mlhdlc_temp_dir);

Simulate the Design

Simulate the design with the testbench prior to code generation to make sure
there are no run-time errors.

mlhdlc_fir_tb
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Create a New Project From the Command Line

coder -hdlcoder -new fir_project

Next, add the file ’mlhdlc_fir.m’ to the project as the MATLAB Function and
’mlhdlc_fir_tb.m’ as the MATLAB Test Bench.

You can refer to Getting Started with MATLAB to HDL Workflow tutorial for
a more complete tutorial on creating and populating MATLAB HDL Coder
projects.
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Distributed Pipelining

To increase the clock speed, the user can set a number of input and output
pipeline stages for any design. In this particular example Input pipelining
option is set to ’1’ and Output pipelining option is set to ’20’. Without any
additional options turned on these settings will add one input pipeline register
at all input ports of the top level design and 20 output pipeline registers at
each of the output ports.

If the option ’Distribute pipeline registers’ is enabled, HDL Coder tries to
reposition the registers to achieve the best clock frequency.

In addition to moving the input and output pipeline registers, HDL Coder also
tries to move the registers modeled internally in the design using persistent
variables or with system objects like dsp.Delay.

Additional opportunities for improvements become available if you unroll
loops. The ’Unroll Loops’ option unrolls explicit for-loops in MATLAB code
in addition to implicit for-loops that are inferred for vector and matrix
operations.
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Run Fixed-Point Conversion and HDL Code Generation

Launch the Workflow Advisor and right click on the ’Code Generation’ step.
Choose the option ’Run to selected task’ to run all the steps from the beginning
through the HDL code generation.

Examine the Synthesis Results

Run the logic synthesis step with the following default options if you have ISE
installed on your machine.
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In the synthesis report, note the clock frequency reported by the synthesis
tool without any optimization options enabled.
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When you synthesize the design with the loop unrolling and distributed
pipelining options enabled, you see a significant clock frequency increase
with pipelining options turned on.
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Clean Up the Generated Files

Run the following commands to clean up the temporary project folder.

mlhdlc_demo_dir = fullfile(matlabroot, 'toolbox', 'hdlcoder', 'hdlcoderdemo
mlhdlc_temp_dir = [tempdir 'mlhdlc_fir'];
clear mex;
cd (mlhdlc_demo_dir);
rmdir(mlhdlc_temp_dir, 's');
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Map Matrices to Block RAMs to Reduce Area
This example shows how to use the RAM mapping optimization in HDL
Coder™ to map persistent matrix variables to block RAMs in hardware.

Introduction

One of the attractive features of writing MATLAB code is the ease of creating,
accessing, modifying and manipulating matrices in MATLAB.

When processing such MATLAB code, HDL Coder maps these matrices to
wires or registers in HDL. For example, local temporary matrix variables are
mapped to wires, whereas persistent matrix variables are mapped to registers.

The latter tends to be an inefficient mapping when the matrix size is large,
since the number of register resources available is limited. It also complicates
synthesis, placement and routing.

Modern FPGAs feature block RAMs that are designed to have large matrices.
HDL Coder takes advantage of this feature and automatically maps matrices
to block RAMs to improve area efficiency. For certain designs, mapping these
persistent matrices to RAMs is mandatory if the design is to be realized.
State-of-the-art synthesis tools may not be able to synthesize designs when
large matrices are mapped to registers, whereas the problem size is more
manageable when the same matrices are mapped to RAMs.

MATLAB Design

design_name = 'mlhdlc_sobel.m';
testbench_name = 'mlhdlc_sobel_tb.m';

• MATLAB Design: mlhdlc_sobel

• MATLAB Testbench: mlhdlc_sobel_tb

• Input Image: stop_sign

Create a New Folder and Copy Relevant Files

Execute the following lines of code to copy the example files into a temporary
folder.
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mlhdlc_demo_dir = fullfile(matlabroot, 'toolbox', 'hdlcoder', 'hdlcoderdemo
mlhdlc_temp_dir = [tempdir 'mlhdlc_sobel'];

% create a temporary folder and copy the MATLAB files
cd(tempdir);
[~, ~, ~] = rmdir(mlhdlc_temp_dir, 's');
mkdir(mlhdlc_temp_dir);
cd(mlhdlc_temp_dir);

% copy the design files to the temporary directory
copyfile(fullfile(mlhdlc_demo_dir, design_name), mlhdlc_temp_dir);
copyfile(fullfile(mlhdlc_demo_dir, testbench_name), mlhdlc_temp_dir);

Simulate the Design

Simulate the design with the test bench prior to code generation to make sure
there are no runtime errors.

mlhdlc_sobel_tb

Create a New HDL Coder™ Project

Run the following command to create a new project.

coder -hdlcoder -new mlhdlc_ram

Next, add the file ’mlhdlc_sobel.m’ to the project as the MATLAB function,
and ’mlhdlc_sobel_tb.m’ as the MATLAB test bench.
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You can refer to Getting Started with MATLAB to HDL Workflow tutorial for
a more complete tutorial on creating and populating MATLAB HDL Coder
projects.

Turn On the RAM Mapping Optimization

Launch the Workflow Advisor.

The checkbox ’Map persistent array variables to RAMs’ needs to be turned on
to map persistent variables to block RAMs in the generated code.

Run Fixed-Point Conversion and HDL Code Generation
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In the Workflow Advisor, right-click the ’Code Generation’ step. Choose the
option ’Run to selected task’ to run all the steps from the beginning through
HDL code generation.

Examine the Generated Code

Examine the messages in the log window to see the RAM files generated
along with the design.

A warning message appears for each persistent matrix variable not mapped
to RAM.

Examine the Resource Report

Take a look at the generated resource report, which shows the number of
RAMs inferred, by following the ’Resource Utilization report...’ link in the
generated code window.
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Additional Notes on RAM Mapping

• Persistent matrix variable accesses must be in unconditional regions, i.e.,
outside any if-else, switch case, or for-loop code.

• MATLAB functions can have any number of RAM matrices.

• All matrix variables in MATLAB that are declared persistent and meet the
threshold criteria get mapped to RAMs.

• A warning is shown when a persistent matrix does not get mapped to RAM.

• Read-dependent write data cycles are not allowed: you cannot compute the
write data as a function of the data read from the matrix.

• Persistent matrices cannot be copied as a whole or accessed as a sub matrix:
matrix access (read/write) is allowed only on single elements of the matrix.

• Mapping persistent matrices with non-zero initial values to RAMs is not
supported.

Clean up the Generated Files

Run the following commands to clean up the temporary project folder.

mlhdlc_demo_dir = fullfile(matlabroot, 'toolbox', 'hdlcoder', 'hdlcoderdemo
mlhdlc_temp_dir = [tempdir 'mlhdlc_sobel'];
clear mex;
cd (mlhdlc_demo_dir);
rmdir(mlhdlc_temp_dir, 's');
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Resource Sharing of Multipliers to Reduce Area
This example shows how to use the resource sharing optimization in HDL
Coder™. This optimization identifies functionally equivalent multiplier
operations in MATLAB code and shares them in order to optimize design area.
You have control over the number of multipliers to be shared in the design.

Introduction

Resource sharing is a design-wide optimization supported by HDL Coder™
for implementing area-efficient hardware.

This optimization enables users to share hardware resources by mapping ’N’
functionally-equivalent MATLAB operators, in this case multipliers, to a
single operator.

The user specifies ’N’ using the ’Resource Sharing Factor’ option in the
optimization panel.

Consider the following example model of a symmetric FIR filter. It contains 4
product blocks that are functionally equivalent and which are mapped to 4
multipliers in hardware. The Resource Utilization Report shows the number
of multipliers inferred from the design.

MATLAB Design

The MATLAB code used in the example is a simple symmetric FIR filter
written in MATLAB and also has a testbench that exercises the filter.

design_name = 'mlhdlc_sharing.m';
testbench_name = 'mlhdlc_sharing_tb.m';

Let us take a look at the MATLAB design.

type(design_name);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% MATLAB design: Symmetric FIR Filter
%
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% Key Design pattern covered in this example:
% (1) Filter states represented using the persistent variables
% (2) Filter coefficients passed in as parameters
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Copyright 2011 The MathWorks, Inc.

%#codegen
function [y_out, x_out] = mlhdlc_sharing(x_in, h)
% Symmetric FIR Filter

persistent ud1 ud2 ud3 ud4 ud5 ud6 ud7 ud8;
if isempty(ud1)

ud1 = 0; ud2 = 0; ud3 = 0; ud4 = 0; ud5 = 0; ud6 = 0; ud7 = 0; ud8 = 0;
end

x_out = ud8;

a1 = ud1 + ud8;
a2 = ud2 + ud7;
a3 = ud3 + ud6;
a4 = ud4 + ud5;

% filtered output
y_out = (h(1) * a1 + h(2) * a2) + (h(3) * a3 + h(4) * a4);

% update the delay line
ud8 = ud7;
ud7 = ud6;
ud6 = ud5;
ud5 = ud4;
ud4 = ud3;
ud3 = ud2;
ud2 = ud1;
ud1 = x_in;

end
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type(testbench_name);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% MATLAB test bench for the FIR filter
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Copyright 2011 The MathWorks, Inc.

clear mlhdlc_sharing;

% input signal with noise
x_in = cos(3.*pi.*(0:0.001:2).*(1+(0:0.001:2).*75)).';

len = length(x_in);
y_out = zeros(1,len);
x_out = zeros(1,len);

% Define a regular MATLAB constant array:
%
% filter coefficients
h = [-0.1339 -0.0838 0.2026 0.4064];

for ii=1:len
data = x_in(ii);
% call to the design 'mlhdlc_sfir' that is targeted for hardware
[y_out(ii), x_out(ii)] = mlhdlc_sharing(data, h);

end

figure('Name', [mfilename, '_plot']);
plot(1:len,y_out);

Create a New Folder and Copy Relevant Files

Execute the following lines of code to copy the necessary example files into a
temporary folder.

mlhdlc_demo_dir = fullfile(matlabroot, 'toolbox', 'hdlcoder', 'hdlcoderdemo
mlhdlc_temp_dir = [tempdir 'mlhdlc_sfir_sharing'];

7-36



Resource Sharing of Multipliers to Reduce Area

% create a temporary folder and copy the MATLAB files
cd(tempdir);
[~, ~, ~] = rmdir(mlhdlc_temp_dir, 's');
mkdir(mlhdlc_temp_dir);
cd(mlhdlc_temp_dir);

copyfile(fullfile(mlhdlc_demo_dir, design_name), mlhdlc_temp_dir);
copyfile(fullfile(mlhdlc_demo_dir, testbench_name), mlhdlc_temp_dir);

Create a New HDL Coder Project

Run the following command to create a new project:

coder -hdlcoder -new mlhdlc_sfir_sharing

Next, add the file ’mlhdlc_sharing.m’ to the project as the MATLAB Function
and ’mlhdlc_sharing_tb.m’ as the MATLAB Test Bench.

You can refer to Getting Started with MATLAB to HDL Workflow tutorial for
a more complete tutorial on creating and populating MATLAB HDL Coder
projects.

Realize an N-to-1 Mapping of Multipliers

Turn on the resource sharing optimization by setting the ’Resource Sharing
Factor’ to a positive integer value.

This parameter specifies ’N’ in the N-to-1 hardware mapping. Choose a value
of N > 1.
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Examine the Resource Report

There are 4 multiplication operators in this example design. Generating HDL
with a ’SharingFactor’ of 4 will result in only one multiplier in the generated
code.
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Sharing Architecture

The following figure shows how the algorithm is implemented in hardware
when we synthesize the generated code without turning on the sharing
optimization.
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The following figure shows the sharing architecture automatically
implemented by HDL Coder when the sharing optimization option is turned
on.

The inputs to the shared multiplier are time-multiplexed at a faster rate (in
this case 4x faster and denoted in red). The outputs are then routed to the
respective consumers at a slower rate (in green).
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Launch the Workflow Advisor and right-click the ’Code Generation’ step.
Choose the option ’Run to selected task’ to run all the steps from the beginning
through the HDL code generation.

Run Synthesis and Examine Synthesis Results

Synthesize the generated code from the design with this optimization turned
off, then with it turned on, and examine the area numbers in the resource
report.

Known Limitations

Sharing two or more multipliers requires that operands of all the multipliers
match exactly in terms of numeric type, size, and complexity.

Clean up the Generated Files

Run the following commands to clean up the temporary project folder.

mlhdlc_demo_dir = fullfile(matlabroot, 'toolbox', 'hdlcoder', 'hdlcoderdemo
mlhdlc_temp_dir = [tempdir 'mlhdlc_sfir_sharing'];
clear mex;
cd (mlhdlc_demo_dir);
rmdir(mlhdlc_temp_dir, 's');
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Loop Streaming to Reduce Area
This example shows how to use the design-level loop streaming optimization
in HDL Coder™ to optimize area.

Introduction

A MATLAB for loop generates a FOR_GENERATE loop in VHDL. Such loops
are always spatially unrolled for execution in hardware. In other words, the
body of the software loop is replicated as many times in hardware as the
number of loop iterations. This results in inefficient area usage.

The loop streaming optimization creates an alternative implementation of a
software loop, where the body of the loop is shared in hardware. Instead of
spatially replicating copies of the loop body, HDL Coder™ creates a single
hardware instance of the loop body that is time-multiplexed across loop
iterations.

MATLAB Design

The MATLAB code used in this example implements a simple FIR filter. This
example also shows a MATLAB testbench that exercises the filter.

design_name = 'mlhdlc_fir.m';
testbench_name = 'mlhdlc_fir_tb.m';

1 Design: mlhdlc_fir

2 Test Bench: mlhdlc_fir_tb

Create a New Folder and Copy Relevant Files

Execute the following lines of code to copy the necessary example files into a
temporary folder.

mlhdlc_demo_dir = fullfile(matlabroot, 'toolbox', 'hdlcoder', 'hdlcoderdemo
mlhdlc_temp_dir = [tempdir 'mlhdlc_fir'];

% create a temporary folder and copy the MATLAB files
cd(tempdir);
[~, ~, ~] = rmdir(mlhdlc_temp_dir, 's');
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mkdir(mlhdlc_temp_dir);
cd(mlhdlc_temp_dir);

copyfile(fullfile(mlhdlc_demo_dir, design_name), mlhdlc_temp_dir);
copyfile(fullfile(mlhdlc_demo_dir, testbench_name), mlhdlc_temp_dir);

Simulate the Design

Simulate the design with the testbench prior to code generation to make sure
there are no runtime errors.

mlhdlc_fir_tb
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Creating a New Project From the Command Line

To create a new project, enter the following command:

coder -hdlcoder -new fir_project

Next, add the file ’mlhdlc_fir.m’ to the project as the MATLAB Function and
’mlhdlc_fir_tb.m’ as the MATLAB Test Bench.

Launch the Workflow Advisor.
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You can refer to Getting Started with MATLAB to HDL Workflow tutorial for
a more complete tutorial on creating and populating MATLAB HDL Coder
projects.

Turn On Loop Streaming

The loop streaming optimization in HDL Coder converts software loops
(either written explicitly using a for-loop statement, or inferred loops from
matrix/vector operators) to area-friendly hardware loops.
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Run Fixed-Point Conversion and HDL Code Generation

Right-click the ’Code Generation’ step. Choose the option ’Run to selected
task’ to run all the steps from the beginning through HDL code generation.

Examine the Generated Code

When you synthesize the design with the loop streaming optimization, you
see a reduction in area resources in the resource report. Try generating HDL
code with and without the optimization.

The resource report without the loop streaming optimization:

The resource report with the loop streaming optimization enabled:
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Known Limitations

Loops will be streamed only if they are regular nested loops. A regular nested
loop structure is defined as one where:

• None of the loops in any level of nesting appear in a conditional flow region,
i.e. no loop can be embedded within if-else or switch-else regions.

• Loop index variables are monotonically increasing.

• Total number of iterations of the loop structure is non-zero.

• There are no back-to-back loops at the same level of the nesting hierarchy.

Clean up the Generated Files

Run the following commands to clean up the temporary project folder.

mlhdlc_demo_dir = fullfile(matlabroot, 'toolbox', 'hdlcoder', 'hdlcoderdemo
mlhdlc_temp_dir = [tempdir 'mlhdlc_fir'];
clear mex;
cd (mlhdlc_demo_dir);
rmdir(mlhdlc_temp_dir, 's');
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Constant Multiplier Optimization to Reduce Area
This example shows how to perform a design-level area optimization in HDL
Coder by converting constant multipliers into shifts and adds using canonical
signed digit (CSD) techniques.

Introduction

This tutorial shows how the use of canonical signed digit (CSD) representation
of multiplier constants (for example, in gain coefficients or filter coefficients)
can significantly reduce the area of the hardware implementation.

Canonical Signed Digit (CSD) Representation

A signed digit (SD) representation is an augmented binary representation
with weights 0,1 and -1.

where

For example, here are a couple of signed digit representations for 93:

Note that the signed digit representation is non-unique. A canonical signed
digit (CSD) representation is an SD representation with the minimum
number of non-zero elements.

Here are some properties of CSD numbers:

1 No two consecutive bits in a CSD number are non-zero

2 CSD representation is guaranteed to have minimum number of non-zero
bits
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3 CSD representation of a number is unique

CSD Multiplier

Let us see how a CSD representation can yield an implementation requiring a
minimum number of adders.

Let us look at CSD example:

y = 231 * x
= (11100111) * x % 231 in binary form
= (1001'01001') * x % 231 in signed digit form
= (256 - 32 + 8 - 1) * x %
= (x << 8) - (x << 5) + (x << 3) -x % cost of CSD: 3 Adders

FCSD Multiplier

A combination of factorization and CSD representation of a constant
multiplier can lead to further reduction in hardware cost (number of adders).

FCSD can further reduce the number of adders in the above constant
multiplier:

y = 231 * x
= (7 * 33) * x
= (x << 8 - x) * (x << 5 + x) % cost of FCSD: 2 Adders

CSD/FCSD Costs

This table shows the costs (C) of all 8-bit multipliers.
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MATLAB Design

The MATLAB code used in this example implements a simple FIR filter. The
example also shows a MATLAB test bench that exercises the filter.
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design_name = 'mlhdlc_csd.m';
testbench_name = 'mlhdlc_csd_tb.m';

1 Design: mlhdlc_csd

2 Test Bench: mlhdlc_csd_tb

Create a New Folder and Copy Relevant Files

Execute the following lines of code to copy the necessary example files into a
temporary folder.

mlhdlc_demo_dir = fullfile(matlabroot, 'toolbox', 'hdlcoder', 'hdlcoderdemo
mlhdlc_temp_dir = [tempdir 'mlhdlc_csd'];

% create a temporary folder and copy the MATLAB files
cd(tempdir);
[~, ~, ~] = rmdir(mlhdlc_temp_dir, 's');
mkdir(mlhdlc_temp_dir);
cd(mlhdlc_temp_dir);

copyfile(fullfile(mlhdlc_demo_dir, design_name), mlhdlc_temp_dir);
copyfile(fullfile(mlhdlc_demo_dir, testbench_name), mlhdlc_temp_dir);

Simulate the Design

Simulate the design with the test bench prior to code generation to make sure
there are no runtime errors.

mlhdlc_csd_tb

Create a New Project From the Command Line

Create a new project by entering the following command:

coder -hdlcoder -new csd_prj

Next, add the file ’mlhdlc_csd.m’ to the project as the MATLAB Function and
’mlhdlc_csd_tb.m’ as the MATLAB Test Bench.
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You can refer to Getting Started with MATLAB to HDL Workflow tutorial for
a more complete tutorial on creating and populating MATLAB HDL Coder
projects.

Explore CSD Optimization

Look in the Optimizations tab to explore the constant multiplier optimization
options.

Generate Code without Constant Multiplier Optimization

1 Launch the Workflow Advisor.

2 Click the ’Code Generation’ step.
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3 In the Optimizations tab, leave the ’Constant multiplier optimization’
option as ’None’.

4 Enable the ’Unroll Loops’ option to inline multiplier constants.

5 Right-click ’Code Generation’ and choose ’Run the task’ to run all the steps
from the beginning through HDL code generation.

6 Examine the generated code.

Take a look at the resource report for adder and multiplier usage without
the CSD optimization.

Generate Code with CSD Optimization

7-55



7 Optimization

1 Launch the Workflow Advisor.

2 Click the ’Code Generation’ step.

3 In the Optimizations tab, choose ’CSD as the ’Constant multiplier
optimization’ option.

4 Enable the ’Unroll Loops’ option to inline multiplier constants.

5 Right-click ’Code Generation and select ’Run the task’ to run all the steps
from the beginning through HDL code generation.

6 Examine the generated code.

Examine the code with comments that outline the CSD encoding for all the
constant multipliers.

Look at the resource report and notice that with the CSD optimization, the
number of multipliers is reduced to zero and multipliers are replaced by shifts
and adders.
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Generate Code with FCSD Optimization

1 Launch the Workflow Advisor.

2 Click the ’Code Generation’ step.

3 In the Optimizations tab, choose ’FCSD’ as the ’Constant multiplier
optimization’ option.

4 Enable the ’Unroll Loops’ option to inline multiplier constants.

5 Right-click ’Code Generation and select ’Run the task’ to run all the steps
from the beginning through HDL code generation.

6 Examine the generated code.
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Examine the code with comments that outline the FCSD encoding for all
the constant multipliers. In this particular example, the generated code is
identical in terms of area resources for the multiplier constants. However,
take a look at the factorizations of the constants in the generated code.

If you choose the ’Auto’ option, HDL Coder will automatically choose between
the CSD and FCSD options for the best result.

Clean up the Generated Files

Run the following commands to clean up the temporary project folder.

mlhdlc_demo_dir = fullfile(matlabroot, 'toolbox', 'hdlcoder', 'hdlcoderdemo
mlhdlc_temp_dir = [tempdir 'mlhdlc_csd'];
clear mex;
cd (mlhdlc_demo_dir);
rmdir(mlhdlc_temp_dir, 's');
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HDL Workflow Advisor

Overview
The HDL Workflow Advisor is a tool that supports a suite of tasks covering
the stages of the ASIC and FPGA design process, including converting
floating-point MATLAB algorithms to fixed-point algorithms. Some tasks
perform code validation or checking; others run the HDL code generator or
third-party tools. Each folder at the top level of the HDL Workflow Advisor
contains a group of related tasks that you can select and run.

Use the HDL Workflow Advisor to:
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• Convert floating-point MATLAB algorithms to fixed-point algorithms.

If you already have a fixed-point MATLAB algorithm, set Design needs
conversion to Fixed Point? to No to skip this step.

• Generate HDL code from fixed-point MATLAB algorithms.

• Simulate the HDL code using a third-party simulation tool.

• Synthesize the HDL code and run a mapping process that maps the
synthesized logic design to the target FPGA.

• Run a Place and Route process that takes the circuit description produced
by the previous mapping process, and emits a circuit description suitable
for programming an FPGA.

Procedures

Automatically Run Tasks. To automatically run the tasks within a folder:

1 Click the Run button. The tasks run in order until a task fails.

Alternatively, right-click the folder to open the context menu. From the
context menu, select Run to run the tasks within the folder.

2 If a task in the folder fails:

a Fix the failure using the information in the results pane.

b Continue the run by clicking the Run button.

Run Individual Tasks. To run an individual task:

1 Click the Run button.

Alternatively, right-click the task to open the context menu. From the
context menu, select Run to run the selected task.

2 Review Results. The possible results are:

Pass: Move on to the next task.
Warning: Review results, decide whether to move on or fix.
Fail: Review results, do not move on without fixing.
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3 If required, fix the issue using the information in the results pane.

4 Once you have fixed aWarning or Failed task, rerun the task by clicking
Run.

Run to Selected Task. To run the tasks up to and including the currently
selected task:

1 Select the last task that you want to run.

2 Right-click this task to open the context menu.

3 From the context menu, select Run to Selected Task.
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Note If a task before the selected task fails, the Workflow Advisor stops
at the failed task.

Reset a Task. To reset a task:

1 Select the task that you want to reset.

8-5



8 HDL Workflow Advisor Reference

2 Right-click this task to open the context menu.

3 From the context menu, select Reset Task to reset this and subsequent
tasks.

Reset All Tasks in a Folder. To reset a task:

1 Select the folder that you want to reset.

2 Right-click this folder to open the context menu.

3 From the context menu, select Reset Task to reset the tasks this folder
and subsequent folders.
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MATLAB to HDL Code and Synthesis

In this section...

“MATLAB to HDL Code Conversion” on page 8-7

“Code Generation: Target Tab” on page 8-7

“Code Generation: Coding Style Tab” on page 8-8

“Code Generation: Clocks and Ports Tab” on page 8-10

“Code Generation: Test Bench Tab” on page 8-12

“Code Generation: Optimizations Tab” on page 8-15

“Simulation and Verification” on page 8-16

“Synthesis and Analysis” on page 8-17

MATLAB to HDL Code Conversion
The MATLAB to HDL Workflow task in the HDL Workflow Advisor
generates HDL code from fixed-point MATLAB code, and simulates and
verifies the HDL against the fixed-point algorithm. The coder then runs
synthesis, and optionally runs place and route to generate a circuit description
suitable for programming an ASIC or FPGA.

Code Generation: Target Tab
Select target hardware and language and required outputs.

Input Parameters

Target
Target hardware. Select from the list:

Generic ASIC/FPGA
Xilinx
Altera
Simulation
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Language
Select the language (VHDL or Verilog) in which code is generated. The
selected language is referred to as the target language.

Default: VHDL

Check HDL Conformance
Enable HDL conformance checking.

Default: Off

Generate HDL
Enable generation of HDL code for the fixed-point MATLAB algorithm.

Default: On

Generate HDL Test Bench
Enable generation of HDL code for the fixed-point test bench.

Default: Off

Generate EDA Scripts
Enable generation of script files for third-party electronic design
automation (EDA) tools. These scripts let you compile and simulate
generated HDL code and synthesize generated HDL code.

Default: On

Code Generation: Coding Style Tab
Parameters that affect the style of the generated code.

Input Parameters

Preserve MATLAB code comments
Include MATLAB code comments in generated code.

Default: On
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Include MATLAB source code as comments
Include MATLAB source code as comments in the generated code. The
comments precede the associated generated code. Includes the function
signature in the function banner.

Default: On

Generate Report
Enable a code generation report.

Default: Off

VHDL File Extension
Specify the file name extension for generated VHDL files.

Default: .vhd

Verilog File Extension
Specify the file name extension for generated Verilog files.

Default: .v

Comment in header
Specify comment lines in header of generated HDL and test bench files.

Default: None

Text entered in this field generates a comment line in the header of the
generated code. The code generator adds leading comment characters
for the target language. When newlines or linefeeds are included in the
string, the code generator emits single-line comments for each newline.

Package postfix
The coder applies this option only if a package file is required for the
design.

Default: _pkg

Entity conflict postfix
Specify the string to resolve duplicate VHDL entity or Verilog module
names in generated code.

Default: _block
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Reserved word postfix
Specify a string to append to value names, postfix values, or labels that
are VHDL or Verilog reserved words.

Default: _rsvd

Clocked process postfix
Specify a string to append to HDL clock process names.

Default: _process

Complex real part postfix
Specify a string to append to real part of complex signal names.

Default: ’_re’

Complex imaginary part postfix
Specify a string to append to imaginary part of complex signal names.

Default: ’_im’

Pipeline postfix
Specify a string to append to names of input or output pipeline registers.

Default: ’_pipe’

Enable prefix
Specify the base name string for internal clock enables and other flow
control signals in generated code.

Default: ’enb’

Code Generation: Clocks and Ports Tab
Clock and port settings

Input Parameters

Reset type
Specify whether to use asynchronous or synchronous reset logic when
generating HDL code for registers.
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Default: Asynchronous

Reset Asserted level
Specify whether the asserted (active) level of reset input signal is
active-high or active-low.

Default: Active-high

Reset input port
Enter the name for the reset input port in generated HDL code.

Default: reset

Clock input port
Specify the name for the clock input port in generated HDL code.

Default: clk

Clock enable input port
Specify the name for the clock enable input port in generated HDL code.

Default: clk

Oversampling factor
Specify frequency of global oversampling clock as a multiple of the
design under test (DUT) base rate (1).

Default: 1

Input data type
Specify the HDL data type for input ports.

For VHDL, the options are:

• std_logic_vector

Specifies VHDL type STD_LOGIC_VECTOR

• signed/unsigned

Specifies VHDL type SIGNED or UNSIGNED
Default: std_logic_vector

For Verilog, the options are:
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• In generated Verilog code, the data type for all ports is ‘wire’.
Therefore, Input data type is disabled when the target language
is Verilog.

Default: wire

Output data type
Specify the HDL data type for output data types.

For VHDL, the options are:

• Same as input data type

Specifies that output ports have the same type specified by Input
data type.

• std_logic_vector

Specifies VHDL type STD_LOGIC_VECTOR

• signed/unsigned

Specifies VHDL type SIGNED or UNSIGNED
Default: Same as input data type

For Verilog, the options are:

• In generated Verilog code, the data type for all ports is ‘wire’.
Therefore, Output data type is disabled when the target language
is Verilog.

Default: wire

Clock enable output port
Specify the name for the clock enable input port in generated HDL code.

Default: clk_enable

Code Generation: Test Bench Tab
Test bench settings.
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Input Parameters

Test bench name postfix
Specify a string appended to names of reference signals generated in
test bench code.

Default: ’_tb’

Force clock
Specify whether the test bench forces clock enable input signals.

Default: On

Clock High time (ns)
Specify the period, in nanoseconds, during which the test bench drives
clock input signals high (1).

Default: 5

Clock low time (ns)
Specify the period, in nanoseconds, during which the test bench drives
clock input signals low (0).

Default: 5

Hold time (ns)
Specify a hold time, in nanoseconds, for input signals and forced reset
input signals.

Default: 2 (given the default clock period of 10 ns)

Setup time (ns)
Display setup time for data input signals.

Default: 0

Force clock enable
Specify whether the test bench forces clock enable input signals.

Default: On
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Clock enable delay (in clock cycles)
Define elapsed time (in clock cycles) between deassertion of reset and
assertion of clock enable.

Default: 1

Force reset
Specify whether the test bench forces reset input signals.

Default: On

Reset length (in clock cycles)
Define length of time (in clock cycles) during which reset is asserted.

Default: 2

Hold input data between samples
Specify how long subrate signal values are held in valid state.

Default: On

Initialize testbench inputs
Specify initial value driven on test bench inputs before data is asserted
to device under test (DUT).

Default: Off

Multi file testbench
Divide generated test bench into helper functions, data, and HDL test
bench code files.

Default: Off

Test bench data file name postfix
Specify suffix added to test bench data file name when generating
multi-file test bench.

Default: ’_data’

Test bench reference post fix
Specify a string appended to names of reference signals generated in
test bench code.
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Default: ’_ref’

Ignore data checking (number of samples)
Specify number of samples during which output data checking is
suppressed.

Default: 0

Use fiaccel to accelerate test bench logging
To generate a test bench, the coder simulates the original MATLAB
code. Use the Fixed-Point Designer fiaccel function to accelerate this
simulation and accelerate test bench logging.

Default: On

Code Generation: Optimizations Tab
Optimization settings

Input Parameters

Map persistent array variables to RAMs
Select to map persistent array variables to RAMs instead of mapping to
shift registers.

Default: Off

Dependencies:

• RAM Mapping Threshold

• Persistent variable names for RAM Mapping

RAM Mapping Threshold
Specify the minimum RAM size required for mapping persistent array
variables to RAMs.

Default: 256

Persistent variable names for RAM Mapping
Provide the names of the persistent variables to map to RAMs.

Default: None
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Input Pipelining
Specify number of pipeline registers to insert at top level input ports.
Can improve performance and help to meet timing constraints.

Default: 0

Output Pipelining
Specify number of pipeline registers to insert at top level output ports.
Can improve performance and help to meet timing constraints.

Default: 0

Distribute Pipeline Registers
Reduces critical path by changing placement of registers in design.
Operates on all registers, including those inserted using the Input
Pipelining and Output Pipelining parameters, and internal design
registers.

Default: Off

Sharing Factor
Number of additional sources that can share a single resource, such as a
multiplier. To share resources, set Sharing Factor to 2 or higher; a
value of 0 or 1 turns off sharing.

In a design that performs identical multiplication operations, the coder
can reduce the number of multipliers by the sharing factor. This can
significantly reduce area.

Default: 0

Simulation and Verification
Simulates the generated HDL code using the selected simulation tool.

Input Parameters

Simulation tool
Lists the available simulation tools.

Default: None

8-16



MATLAB® to HDL Code and Synthesis

Skip this step
Default: Off

Results and Recommended Actions

Conditions Recommended Action

No simulation tool available on
system path.

Add your simulation tool path to the
MATLAB system path, then restart
MATLAB. For more information, see
“Synthesis Tool Path Setup”.

Synthesis and Analysis
This folder contains tasks to create a synthesis project for the HDL code. The
task then runs the synthesis and, optionally, runs place and route to generate
a circuit description suitable for programming an ASIC or FPGA.

Input Parameters

Skip this step
Default: Off

Skip this step if you are interested only in simulation or you do not
have a synthesis tool.

Create Project
Create synthesis project for supported synthesis tool.

Description. This task creates a synthesis project for the selected synthesis
tool and loads the project with the HDL code generated for your MATLAB
algorithm.

You can select the family, device, package, and speed that you want.

When the project creation is complete, the HDL Workflow Advisor displays
a link to the project in the right pane. Click this link to view the project in
the synthesis tool’s project window.
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Input Parameters.

Synthesis Tool
Select from the list:

• Altera Quartus II

Generate a synthesis project for Altera Quartus II. When you select
this option, the coder sets:

— Chip Family to Stratix II

— Device Name to EP2S60F1020C4
You can manually change these settings.

• Xilinx ISE

Generate a synthesis project for Xilinx ISE. When you select this
option, the coder:

— Sets Chip Family to Virtex4

— Sets Device Name to xc4vsx35

— Sets Package Name to ff6...

— Sets Speed Value to ...
You can manually change these settings.

Default: No Synthesis Tool Specified

When you select No Synthesis Tool Specified, the coder does not
generate a synthesis project. It clears and disables the fields in the
Synthesis Tool Selection pane.

Chip Family
Target device family.

Default: None

Device Name
Specific target device, within selected family.

Default: None
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Package Name
Available package choices. The family and device determine these
choices.

Default: None

Speed Value
Available speed choices. The family, device, and package determine
these choices.

Default: None

Results and Recommended Actions.

Conditions Recommended Action

Synthesis tool fails to create project. Read the error message returned
by synthesis tool, then check the
synthesis tool version, and check
that you have write permission for
the project folder.

Synthesis tool does not appear in
dropdown list.

Add your synthesis tool path to the
MATLAB system path, then restart
MATLAB. For more information, see
“Synthesis Tool Path Setup”.

Run Logic Synthesis
Launch selected synthesis tool and synthesize the generated HDL code.

Description. This task:

• Launches the synthesis tool in the background.

• Opens the previously generated synthesis project, compiles HDL code,
synthesizes the design, and emits netlists and related files.

• Displays a synthesis log in the Result subpane.
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Results and Recommended Actions.

Conditions Recommended Action

Synthesis tool fails when running
place and route.

Read the error message returned
by the synthesis tool, modify the
MATLAB code, then rerun from
the beginning of the HDL Coder
workflow.

Run Place and Route
Launches the synthesis tool in the background and runs a Place and Route
process.

Description. This task:

• Launches the synthesis tool in the background.

• Runs a Place and Route process that takes the circuit description produced
by the previous mapping process, and emits a circuit description suitable
for programming an FPGA.

• Displays a log in the Result subpane.

Input Parameters.

Skip this step
If you select Skip this step, the HDL Workflow Advisor executes the
workflow, but omits the Perform Place and Route, marking it Passed.
You might want to select Skip this step if you prefer to do place and
route work manually.

Default: Off
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Results and Recommended Actions.

Conditions Recommended Action

Synthesis tool fails when running
place and route.

Read the error message returned
by the synthesis tool, modify the
MATLAB code, then rerun from
the beginning of the HDL Coder
workflow.
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• Chapter 9, “Code Generation Options in the HDL Coder Dialog
Boxes”

• Chapter 10, “Specifying Block Implementations and Parameters for
HDL Code Generation”

• Chapter 11, “Guide to Supported Blocks and Block Implementations”

• Chapter 12, “Generating HDL Code for Multirate Models”

• Chapter 13, “The hdldemolib Block Library”

• Chapter 14, “Generating Bit-True Cycle-Accurate Models”

• Chapter 15, “Optimization”

• Chapter 16, “Code Generation Reports, HDL Compatibility Checker,
Block Support Library, and Code Annotation”

• Chapter 17, “HDL Coding Standards”

• Chapter 18, “Interfacing Subsystems and Models to HDL Code”

• Chapter 19, “Stateflow HDL Code Generation Support”

• Chapter 20, “Generating HDL Code with the MATLAB Function
Block”

• Chapter 21, “Generating Scripts for HDL Simulators and Synthesis
Tools”

• Chapter 22, “Using the HDL Workflow Advisor”

• Chapter 23, “HDL Test Bench”

• Chapter 24, “FPGA Board Customization”

• Chapter 25, “HDL Workflow Advisor Tasks”
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Code Generation Options
in the HDL Coder Dialog
Boxes

• “Set HDL Code Generation Options” on page 9-2

• “HDL Code Generation Pane: General” on page 9-8

• “HDL Code Generation Pane: Global Settings” on page 9-22

• “HDL Code Generation Pane: Test Bench” on page 9-78

• “HDL Code Generation Pane: EDA Tool Scripts” on page 9-106
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Set HDL Code Generation Options

In this section...

“HDL Code Generation Options in the Configuration Parameters Dialog
Box” on page 9-2

“HDL Code Generation Options in the Model Explorer” on page 9-3

“Code Menu” on page 9-4

“HDL Code Options in the Block Context Menu” on page 9-5

“The HDL Block Properties Dialog Box” on page 9-6

HDL Code Generation Options in the Configuration
Parameters Dialog Box
The following figure shows the top-level HDL Code Generation pane in
the Configuration Parameters dialog box. To open this dialog box, select
Simulation > Model Configuration Parameters in the Simulink window.
Then select HDL Code Generation from the list on the left.
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Note When the HDL Code Generation pane of the Configuration
Parameters dialog box appears, clicking the Help button displays general
help for the Configuration Parameters dialog box.

HDL Code Generation Options in the Model Explorer
The following figure shows the top-level HDL Code Generation pane as
displayed in the Contents pane of the Model Explorer.
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To view this dialog box:

1 Open the Model Explorer.

2 Select your model’s active configuration set in the Model Hierarchy tree
on the left.

3 Select HDL Code Generation from the list in the Contents pane.

Code Menu
The Code > HDL Code submenu provides shortcuts to the HDL code
generation options. You can also use this submenu to initiate code generation.

Options include:
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• HDL Workflow Advisor: Open the HDL Workflow Advisor.

• Options: Open the HDL Code Generation pane in the Configuration
Parameters dialog box.

• Generate HDL: Initiate HDL code generation; equivalent to theGenerate
button in the Configuration Parameters dialog box or Model Explorer.

• Generate Test Bench: Initiate test bench code generation; equivalent to
the Generate Test Bench button in the Configuration Parameters dialog
box or Model Explorer. If you do not select a subsystem in the Generate
HDL for menu, the Generate Test Bench menu option is not available.

• Add HDL Coder Configuration to Model or Remove HDL Coder
Configuration from Model: The HDL configuration component is
internal data that the coder creates and attaches to a model. This
component lets you view the HDL Code Generation pane in the
Configurations Parameters dialog box, and use theHDL Code Generation
pane to set HDL code generation options. If you need to add or remove the
HDL Code Generation configuration component to or from a model, use
this option to do so. For more information, see “Add or Remove the HDL
Configuration Component” on page 16-46.

HDL Code Options in the Block Context Menu
When you right-click a block that the coder supports, the context menu for
the block includes an HDL Code submenu. The coder enables items in the
submenu according to:

• The block type: for subsystems, the menu enables some options that are
specific to subsystems.

• Whether or not code and traceability information has been generated for
the block or subsystem.

The following summary describes the HDL Code submenu options.
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Option Description Availability

Check
Subsystem
Compatibility

Runs the HDL
compatibility checker
(checkhdl) on the
subsystem.

Available only for
subsystems.

Generate HDL
for Subsystem

Runs the HDL code
generator (makehdl) and
generates code for the
subsystem.

Available only for
subsystems.

HDL Coder
Properties

Opens the Configuration
Parameters dialog box,
with the top-level HDL
Code Generation pane
selected.

Available for blocks or
subsystems.

HDL Block
Properties

Opens a block properties
dialog box for the block or
subsystem. See “The HDL
Block Properties Dialog
Box” on page 9-6 for more
information.

Available for blocks or
subsystems.

HDL Workflow
Advisor

Opens the HDL Workflow
Advisor for the subsystem.

Available only for
subsystems.

Navigate to
Code

Activates the HTML code
generation report window,
displaying the beginning
of the code generated
for the selected block or
subsystem. See “Tracing
from Model to Code”
on page 16-22 for more
information.

Enabled when both code
and a traceability report
have been generated for
the block or subsystem.

The HDL Block Properties Dialog Box
The coder provides selectable alternate block implementations for many block
types. Each implementation is optimized for different characteristics, such
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as speed or chip area. The HDL Properties dialog box lets you choose the
implementation for a selected block.

Most block implementations support a number of implementation parameters
that let you control further details of code generation for the block. The HDL
Properties dialog box lets you set implementation parameters for a block.

The following figure shows the HDL Properties dialog box for a block.

There are a number of ways to specify implementations and implementation
parameters for individual blocks or groups of blocks. See “Set and View HDL
Block Parameters” on page 10-2 for detailed information.
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HDL Code Generation Pane: General

In this section...

“HDL Code Generation Top-Level Pane Overview” on page 9-10

“Generate HDL for” on page 9-12

“Language” on page 9-13

“Folder” on page 9-14

“Generate HDL code” on page 9-15
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In this section...

“Generate validation model” on page 9-16

“Generate traceability report” on page 9-17

“Generate resource utilization report” on page 9-18

“Generate optimization report” on page 9-19

“Generate model Web view” on page 9-20
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HDL Code Generation Top-Level Pane Overview
The top-levelHDL Code Generation pane contains buttons that initiate code
generation and compatibility checking, and sets code generation parameters.

Buttons in the HDL Code Generation Top-Level Pane
The buttons in the HDL Code Generation pane perform functions related to
code generation. These buttons are:

Generate: Initiates code generation for the system selected in the
Generate HDL for menu. See also makehdl.
Run Compatibility Checker: Invokes the compatibility checker
to examine the system selected in the Generate HDL for menu for
compatibility problems. See also checkhdl.
Browse: Lets you navigate to and select the target folder to which
generated code and script files are written. The path to the target folder is
entered into the Folder field.
Restore Factory Defaults: sets model parameters to their default
values; also (if the model has a control file linked to it) unlinks the control
file from the model.
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Generate HDL for
Select the subsystem or model from which code is generated. The list includes
the path to the root model and to subsystems in the model.

Settings
Default: The root model is selected.

Command-Line Information
Pass in the path to the model or subsystem for which code is to be generated
as the first argument to makehdl.

See Also
makehdl
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Language
Select the language (VHDL or Verilog) in which code is generated. The
selected language is referred to as the target language.

Settings
Default: VHDL

VHDL
Generate VHDL code.

Verilog
Generate Verilog code.

Command-Line Information

Property: TargetLanguage
Type: string
Value: 'VHDL' | 'Verilog'
Default: 'VHDL'

See Also

• TargetLanguage

• makehdl
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Folder
Enter a path to the folder into which code is generated. Alternatively, click
Browse to navigate to and select a folder. The selected folder is referred
to as the target folder.

Settings
Default: The default target folder is a subfolder of your working folder,
named hdlsrc.

Command-Line Information

Property: TargetDirectory
Type: string
Value: A valid path to your target folder
Default: 'hdlsrc'

See Also

• TargetDirectory

• makehdl
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Generate HDL code
Enable or disable HDL code generation for the model.

Settings
Default: On

On
Generate HDL code.

Off
Do not generate HDL code.

Command-Line Information

Property: GenerateHDLCode
Type: string
Value: 'on' | 'off'
Default: 'on'

See Also
GenerateHDLCode
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Generate validation model
Enable or disable generation of a validation model that verifies the functional
equivalence of the original model with the generated model. The validation
model contains both the original and the generated DUT models.

If you enable generation of a validation model, also enable delay balancing to
keep the generated DUT model synchronized with the original DUT model.
Validation fails when there is a mismatch between delays in the original DUT
model and delays in the generated DUT model.

Settings
Default: Off

On
Generate the validation model.

Off
Do not generate the validation model.

Command-Line Information

Property: GenerateValidationModel
Type: string
Value: 'on' | 'off'
Default: 'off'

See Also
GenerateValidationModel, BalanceDelays
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Generate traceability report
Enable or disable generation of an HTML code generation report with
hyperlinks from code to model and model to code.

Settings
Default: Off

On
Create and display an HTML code generation report. See Creating and
Using a Code Generation Report.

Off
Do not create an HTML code generation report.

Command-Line Information

Property: Traceability
Type: string
Value: 'on' | 'off'
Default: 'off'

See Also
Traceability
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Generate resource utilization report
Enable or disable generation of an HTML resource utilization report

Settings
Default: Off

On
Create and display an HTML resource utilization report. The report
contains information about the number of hardware resources
(multipliers, adders, registers) used in the generated HDL code. The
report includes hyperlinks to the referenced blocks in the model. See
Creating and Using a Code Generation Report.

Off
Do not create an HTML resource utilization report.

Command-Line Information

Property: ResourceReport
Type: string
Value: 'on' | 'off'
Default: 'off'

See Also
ResourceReport
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Generate optimization report
Enable or disable generation of an HTML optimization report

Settings
Default: Off

On
Create and display an HTML optimization report. The report contains
information about the results of streaming, sharing, and distributed
pipelining optimizations that were implemented in the generated code.
The report includes hyperlinks back to referenced blocks, subsystems,
or validation models.See Creating and Using a Code Generation
Report.

Off
Do not create an HTML optimization report.

Command-Line Information

Property: OptimizationReport
Type: string
Value: 'on' | 'off'
Default: 'off'

See Also
OptimizationReport
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Generate model Web view
Include the model Web view in the code generation report to navigate between
the code and model within the same window. You can share your model
and generated code outside of the MATLAB environment. You must have a
Simulink Report Generator™ license to include a Web view of the model in
the code generation report.

Settings
Default: Off

On
Include model Web view in the code generation report.

Off
Omit model Web view in the code generation report.

Dependencies

• This parameter only appears for ERT-based targets.

• This parameter requires an Embedded Coder license when generating code.

• This parameter is enabled and selected by Create code generation
report.

• To enable traceability between the code and model, select Code-to-model
and Model-to-code.

Command-Line Information

Parameter: GenerateWebview
Type: string
Value: 'on' | 'off'
Default: 'off'
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Recommended Settings

Application Setting

Debugging No impact

Traceability No impact

Efficiency No impact

Safety precaution No impact

See Also
“Web View of Model in Code Generation Report”

See Also
“Web View of Model in Code Generation Report” on page 16-28
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HDL Code Generation Pane: Global Settings

In this section...

“Global Settings Overview” on page 9-25

“Reset type” on page 9-26

“Reset asserted level” on page 9-27

“Clock input port” on page 9-28

“Clock enable input port” on page 9-29
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In this section...

“Reset input port” on page 9-30

“Clock inputs” on page 9-31

“Oversampling factor” on page 9-32

“Comment in header” on page 9-33

“Verilog file extension” on page 9-34

“VHDL file extension” on page 9-35

“Entity conflict postfix” on page 9-36

“Package postfix” on page 9-37

“Reserved word postfix” on page 9-38

“Module name prefix” on page 9-38

“Split entity and architecture” on page 9-40

“Split entity file postfix” on page 9-42

“Split arch file postfix” on page 9-43

“Clocked process postfix” on page 9-44

“Enable prefix” on page 9-45

“Pipeline postfix” on page 9-46

“Complex real part postfix” on page 9-47

“Complex imaginary part postfix” on page 9-48

“Input data type” on page 9-49

“Output data type” on page 9-50

“Clock enable output port” on page 9-52

“Balance delays” on page 9-53

“Hierarchical distributed pipelining” on page 9-54

“Optimize timing controller” on page 9-55

“Minimize clock enables” on page 9-57

“RAM mapping threshold (bits)” on page 9-60
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In this section...

“Max oversampling” on page 9-61

“Max computation latency” on page 9-62

“Represent constant values by aggregates” on page 9-63

“Use rising_edge for registers” on page 9-64

“Loop unrolling” on page 9-65

“Use Verilog `timescale directives” on page 9-66

“Inline VHDL configuration” on page 9-67

“Concatenate type safe zeros” on page 9-68

“Emit time/date stamp in header” on page 9-69

“HDL coding standard” on page 9-70

“Scalarize vector ports” on page 9-71

“Minimize intermediate signals” on page 9-72

“Include requirements in block comments” on page 9-73

“Inline MATLAB Function block code” on page 9-74

“Generate parameterized HDL code from masked subsystem” on page 9-75

“Initialize all RAM blocks” on page 9-76

“RAM Architecture” on page 9-76
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Global Settings Overview
The Global Settings pane enables you to specify detailed characteristics
of the generated code, such as HDL element naming and whether certain
optimizations are applied.

9-25



9 Code Generation Options in the HDL Coder Dialog Boxes

Reset type
Specify whether to use asynchronous or synchronous reset logic when
generating HDL code for registers.

Settings
Default: Asynchronous

Asynchronous
Use asynchronous reset logic.

Synchronous
Use synchronous reset logic.

Command-Line Information

Property: ResetType
Type: string
Value: 'async' | 'sync'
Default: 'async'

See Also
ResetType
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Reset asserted level
Specify whether the asserted (active) level of reset input signal is active-high
or active-low.

Settings
Default: Active-high

Active-high
Asserted (active) level of reset input signal is active-high (1).

Active-low
Asserted (active) level of reset input signal is active-low (0).

Command-Line Information

Property: ResetAssertedLevel
Type: string
Value: 'active-high' | 'active-low'
Default: 'active-high'

See Also
ResetAssertedLevel
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Clock input port
Specify the name for the clock input port in generated HDL code.

Settings
Default: clk

Enter a string value to be used as the clock signal name in generated HDL
code. If you specify a string that is a VHDL or Verilog reserved word, the code
generator appends a reserved word postfix string to form a valid VHDL or
Verilog identifier. For example, if you specify the reserved word signal, the
resulting name string would be signal_rsvd.

Command-Line Information

Property: ClockInputPort
Type: string
Value: A valid identifier in the target language
Default: 'clk'

See Also
ClockInputPort
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Clock enable input port
Specify the name for the clock enable input port in generated HDL code.

Settings
Default: clk_enable

Enter a string value to be used as the clock enable input port name in
generated HDL code. If you specify a string that is a VHDL or Verilog
reserved word, the code generator appends a reserved word postfix string
to form a valid VHDL or Verilog identifier. For example, if you specify the
reserved word signal, the resulting name string would be signal_rsvd.

Tip
The clock enable input signal is asserted active-high (1). Thus, the input
value must be high for the generated entity’s registers to be updated.

Command-Line Information

Property: ClockEnableInputPort
Type: string
Value: A valid identifier in the target language
Default: 'clk_enable'

See Also
ClockEnableInputPort
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Reset input port
Enter the name for the reset input port in generated HDL code.

Settings
Default: reset

Enter a string value to be used as the reset input port name in generated
HDL code. If you specify a string that is a VHDL or Verilog reserved word, the
code generator appends a reserved word postfix string to form a valid VHDL
or Verilog identifier. For example, if you specify the reserved word signal,
the resulting name string would be signal_rsvd.

Tip
If the reset asserted level is set to active-high, the reset input signal is
asserted active-high (1) and the input value must be high (1) for the entity’s
registers to be reset. If the reset asserted level is set to active-low, the reset
input signal is asserted active-low (0) and the input value must be low (0)
for the entity’s registers to be reset.

Command-Line Information

Property: ResetInputPort
Type: string
Value: A valid identifier in the target language
Default: 'reset'

See Also
ResetInputPort
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Clock inputs
Specify generation of single or multiple clock inputs.

Settings
Default: Single

Single
Generates a single clock input for the DUT. If the DUT is multirate,
the input clock is the master clock rate, and a timing controller is
synthesized to generate additional clocks as required.

Multiple
Generates a unique clock for each Simulink rate in the DUT. The
number of timing controllers generated depends on the contents of the
DUT.

Command-Line Information

Property: ClockInputs
Type: string
Value: 'Single' | 'Multiple'
Default: 'Single'

See Also
ClockInputs
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Oversampling factor
Specify frequency of global oversampling clock as a multiple of the model’s
base rate.

Settings
Default: 1.

Oversampling factor specifies the oversampling factor of a global
oversampling clock. The oversampling factor expresses the desired rate of the
global oversampling clock as a multiple of your model’s base rate. By default,
the coder does not generate a global oversampling clock.

If you want to generate a global oversampling clock:

• The Oversampling factor must be an integer greater than or equal to 1.

• In a multirate DUT, other rates in the DUT must divide evenly into the
global oversampling rate.

Command-Line Information

Property: Oversampling
Type: int
Value: integer greater than or equal to 1
Default: 1

See Also

Generating a Global Oversampling Clock
Oversampling

9-32



HDL Code Generation Pane: Global Settings

Comment in header
Specify comment lines in header of generated HDL and test bench files.

Settings
Default: None

Text entered in this field generates a comment line in the header of generated
model and test bench files. The code generator adds leading comment
characters for the target language. When newlines or linefeeds are included
in the string, the code generator emits single-line comments for each newline.

Command-Line Information

Property: UserComment
Type: string

See Also
UserComment
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Verilog file extension
Specify the file name extension for generated Verilog files.

Settings
Default: .v

This field specifies the file name extension for generated Verilog files.

Dependency
This option is enabled when the target language (specified by the Language
option) is Verilog.

Command-Line Information

Property: VerilogFileExtension
Type: string
Default: '.v'

See Also
VerilogFileExtension
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VHDL file extension
Specify the file name extension for generated VHDL files.

Settings
Default: .vhd

This field specifies the file name extension for generated VHDL files.

Dependencies
This option is enabled when the target language (specified by the Language
option) is VHDL.

Command-Line Information

Property: VHDLFileExtension
Type: string
Default: '.vhd'

See Also
VHDLFileExtension
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Entity conflict postfix
Specify the string used to resolve duplicate VHDL entity or Verilog module
names in generated code.

Settings
Default: _block

The specified postfix resolves duplicate VHDL entity or Verilog module
names. For example, in the default case, if the coder detects two entities with
the name MyFilt, the coder names the first entity MyFilt and the second
instance MyFilt_entity.

Command-Line Information

Property: EntityConflictPostfix
Type: string
Value: A valid string in the target language
Default: '_block'

See Also
EntityConflictPostfix
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Package postfix
Specify a string to append to the model or subsystem name to form name
of a package file.

Settings
Default: _pkg

The coder applies this option only if a package file is required for the design.

Dependency
This option is enabled when:

The target language (specified by the Language option) is VHDL.

The target language (specified by the Language option) is Verilog, and the
Multi-file test bench option is selected.

Command-Line Information

Property: PackagePostfix
Type: string
Value: A string that is legal in a VHDL package file name
Default: '_pkg'

See Also
PackagePostfix
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Reserved word postfix
Specify a string to append to value names, postfix values, or labels that are
VHDL or Verilog reserved words.

Settings
Default: _rsvd

The reserved word postfix is applied to identifiers (for entities, signals,
constants, or other model elements) that conflict with VHDL or Verilog
reserved words. For example, if your generating model contains a signal
named mod, the coder adds the postfix _rsvd to form the name mod_rsvd.

Command-Line Information

Property: ReservedWordPostfix
Type: string
Default: '_rsvd'

See Also
ReservedWordPostfix

Module name prefix
Specify a prefix for every module or entity name in the generated HDL code.

Settings
Default: ''

Specify a prefix for every module or entity name in the generated HDL code.
The coder also applies this prefix to generated script file names.

You can specify the module name prefix to avoid name collisions if you plan to
instantiate the generated HDL code multiple times in a larger system.

Command-Line Information

Property: ModulePrefix

9-38



HDL Code Generation Pane: Global Settings

Type: string
Default: ''

See Also
ModulePrefix
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Split entity and architecture
Specify whether generated VHDL entity and architecture code is written to a
single VHDL file or to separate files.

Settings
Default: Off

On
VHDL entity and architecture definitions are written to separate files.

Off
VHDL entity and architecture code is written to a single VHDL file.

Tips
The names of the entity and architecture files derive from the base file name
(as specified by the generating model or subsystem name). By default, postfix
strings identifying the file as an entity (_entity) or architecture (_arch) are
appended to the base file name. You can override the default and specify
your own postfix string.

For example, instead of all generated code residing in MyFIR.vhd, you can
specify that the code reside in MyFIR_entity.vhd and MyFIR_arch.vhd.

Dependencies
This option is enabled when the target language (specified by the Language
option) is Verilog.

Selecting this option enables the following parameters:

• Split entity file postfix

• Split architecture file postfix

Command-Line Information

Property: SplitEntityArch
Type: string
Value: 'on' | 'off'
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Default: 'off'

See Also
SplitEntityArch
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Split entity file postfix
Enter a string to be appended to the model name to form the name of a
generated VHDL entity file.

Settings
Default: _entity

Dependencies
This parameter is enabled by Split entity and architecture.

Command-Line Information

Property: SplitEntityFilePostfix
Type: string
Default: '_entity'

See Also
SplitEntityFilePostfix
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Split arch file postfix
Enter a string to be appended to the model name to form the name of a
generated VHDL architecture file.

Settings
Default: _arch

Dependency
This parameter is enabled by Split entity and architecture.

Command-Line Information

Property: SplitArchFilePostfix
Type: string
Default: '_arch'

See Also
SplitArchFilePostfix
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Clocked process postfix
Specify a string to append to HDL clock process names.

Settings
Default: _process

The coder uses process blocks for register operations. The label for each of
these blocks is derived from a register name and the postfix _process. For
example, the coder derives the label delay_pipeline_process from the
register name delay_pipeline and the default postfix string _process.

Command-Line Information

Property: ClockProcessPostfix
Type: string
Default: '_process'

See Also
ClockProcessPostfix
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Enable prefix
Specify the base name string for internal clock enables and other flow control
signals in generated code.

Settings
Default: 'enb'

Where only a single clock enable is generated, Enable prefix specifies the
signal name for the internal clock enable signal.

In some cases, multiple clock enables are generated (for example, when a
cascade block implementation for certain blocks is specified). In such cases,
Enable prefix specifies a base signal name for the first clock enable that
is generated. For other clock enable signals, numeric tags are appended to
Enable prefix to form unique signal names. For example, the following code
fragment illustrates two clock enables that were generated when Enable
prefix was set to 'test_clk_enable':

COMPONENT mysys_tc
PORT( clk : IN std_logic;

reset : IN std_logic;
clk_enable : IN std_logic;
test_clk_enable : OUT std_logic;
test_clk_enable_5_1_0 : OUT std_logic
);

END COMPONENT;

Command-Line Information

Property: EnablePrefix
Type: string
Default: 'enb'

See Also
EnablePrefix
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Pipeline postfix
Specify string to append to names of input or output pipeline registers
generated for pipelined block implementations.

Settings
Default: '_pipe'

You can specify a generation of input and/or output pipeline registers for
selected blocks. The Pipeline postfix option defines a string that the coder
appends to names of input or output pipeline registers.

Command-Line Information

Property: PipelinePostfix
Type: string
Default: '_pipe'

See Also
PipelinePostfix
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Complex real part postfix
Specify string to append to real part of complex signal names.

Settings
Default: '_re'

Enter a string to be appended to the names generated for the real part of
complex signals.

Command-Line Information

Property: ComplexRealPostfix
Type: string
Default: '_re'

See Also
ComplexRealPostfix
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Complex imaginary part postfix
Specify string to append to imaginary part of complex signal names.

Settings
Default: '_im'

Enter a string to be appended to the names generated for the imaginary part
of complex signals.

Command-Line Information

Property: ComplexImagPostfix
Type: string
Default: '_im'

See Also
ComplexImagPostfix
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Input data type
Specify the HDL data type for the model’s input ports.

Settings
For VHDL, the options are:

Default: std_logic_vector

std_logic_vector
Specifies VHDL type STD_LOGIC_VECTOR.

signed/unsigned
Specifies VHDL type SIGNED or UNSIGNED.

For Verilog, the options are:

Default: wire

In generated Verilog code, the data type for all ports is 'wire'. Therefore,
Input data type is disabled when the target language is Verilog.

Dependency
This option is enabled when the target language (specified by the Language
option) is VHDL.

Command-Line Information

Property: InputType
Type: string
Value: (for VHDL)'std_logic_vector' | 'signed/unsigned'
(for Verilog) 'wire'
Default: (for VHDL) 'std_logic_vector'
(for Verilog) 'wire'

See Also
InputType
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Output data type
Specify the HDL data type for the model’s output ports.

Settings
For VHDL, the options are:

Default: Same as input data type

Same as input data type
Specifies that output ports have the same type specified by Input data
type.

std_logic_vector
Specifies VHDL type STD_LOGIC_VECTOR.

signed/unsigned
Specifies VHDL type SIGNED or UNSIGNED.

For Verilog, the options are:

Default: wire

In generated Verilog code, the data type for all ports is 'wire'. Therefore,
Output data type is disabled when the target language is Verilog.

Dependency
This option is enabled when the target language (specified by the Language
option) is VHDL.

Command-Line Information

Property: OutputType
Type: string
Value: (for VHDL)'std_logic_vector' | 'signed/unsigned'
(for Verilog) 'wire'
Default: If the property is left unspecified, output ports have the same
type specified by InputType.
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See Also
OutputType
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Clock enable output port
Specify the name for the generated clock enable output.

Settings
Default: ce_out

A clock enable output is generated when the design requires one.

Command-Line Information

Property: ClockEnableOutputPort
Type: string
Default: 'ce_out'

See Also
ClockEnableOutputPort
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Balance delays
Enable delay balancing.

Settings
Default: On

On
If the coder detects introduction of new delays along one path, matching
delays are inserted on the other paths. When delay balancing is enabled,
the generated model is functionally equivalent to the original model.

Off
The latency along signal paths might not be balanced, and the generated
model might not be functionally equivalent to the original model.

Command-Line Information

Property: BalanceDelays
Type: string
Value: 'on' | 'off'
Default: 'on'

See Also
Delay Balancing
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Hierarchical distributed pipelining
Specify that retiming be applied across a subsystem hierarchy.

Settings
Default: Off

On
Enable retiming across a subsystem hierarchy. The coder applies
retiming hierarchically down, until it reaches a subsystem where
DistributedPipelining is off.

Off
Distribute pipelining only within a subsystem.

Command-Line Information

Property: HierarchicalDistPipelining
Type: string
Value: 'on' | 'off'
Default: 'off'

See Also

• HierarchicalDistPipelining

• DistributedPipelining
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Optimize timing controller
Optimize timing controller entity for speed and code size by implementing
separate counters per rate.

Settings
Default: On

On
The coder generates multiple counters (one counter for each rate in the
model) in the timing controller code. The benefit of this optimization
is that it generates faster logic, and the size of the generated code is
usually much smaller.

Off
The coder generates a timing controller that uses one counter to
generate all rates in the model.

Tip
A timing controller code file is generated if required by the design, for example:

• When code is generated for a multirate model

• When a cascade block implementation for certain blocks is specified

This file contains a module defining timing signals (clock, reset, external clock
enable inputs and clock enable output) in a separate entity or module. In a
multirate model, the timing controller entity generates the required rates from
a single master clock using one or more counters and multiple clock enables.

The timing controller name derives from the name of the subsystem that is
selected for code generation (the DUT), and the current value of the string
property TimingControllerPostfix. For example, if the name of your DUT
is my_test, in the default case the coder adds the TimingControllerPostfix
_tc to form the timing controller name my_test_tc.

Command-Line Information

Property: OptimizeTimingController
Type: string
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Value: 'on' | 'off'
Default: 'on'

See Also
OptimizeTimingController
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Minimize clock enables
Omit generation of clock enable logic for single-rate designs.

Settings
Default: Off

On
For single-rate models, omit generation of clock enable logic wherever
possible. The following VHDL code example does not define or examine
a clock enable signal. When the clock signal (clk) goes high, the current
signal value is output.

Unit_Delay_process : PROCESS (clk, reset)
BEGIN

IF reset = '1' THEN
Unit_Delay_out1 <= to_signed(0, 32);

ELSIF clk'EVENT AND clk = '1' THEN
Unit_Delay_out1 <= In1_signed;

END IF;
END PROCESS Unit_Delay_process;

Off
Generate clock enable logic. The following VHDL code extract
represents a register with a clock enable (enb)

Unit_Delay_process : PROCESS (clk, reset)
BEGIN

IF reset = '1' THEN
Unit_Delay_out1 <= to_signed(0, 32);

ELSIF clk'EVENT AND clk = '1' THEN
IF enb = '1' THEN

Unit_Delay_out1 <= In1_signed;
END IF;

END IF;
END PROCESS Unit_Delay_process;
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Exceptions
In some cases, the coder emits clock enables even when Minimize clock
enables is selected. These cases are:

• Registers inside Enabled, State-Enabled, and Triggered subsystems.

• Multirate models.

• The coder always emits clock enables for the following blocks:

- commseqgen2/PN Sequence Generator

- dspsigops/NCO

Note HDL support for the NCO block will be removed in a future
release. Use the NCO HDL Optimized block instead.

- dspsrcs4/Sine Wave

- hdldemolib/HDL FFT

- built-in/DiscreteFir

- dspmlti4/CIC Decimation

- dspmlti4/CIC Interpolation

- dspmlti4/FIR Decimation

- dspmlti4/FIR Interpolation

- dspadpt3/LMS Filter

- dsparch4/Biquad Filter

- dsparch4/Digital Filter

Command-Line Information

Property: MinimizeClockEnables
Type: string
Value: 'on' | 'off'
Default: 'off'
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See Also
MinimizeClockEnables
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RAM mapping threshold (bits)
Specify the minimum RAM size for mapping to block RAMs instead of to
registers.

Settings
Default: 256

The RAM mapping threshold must be an integer greater than or equal to
zero. The coder uses the threshold to determine whether or not to map the
following elements to block RAMs instead of to registers:

• Delay blocks

• Persistent arrays in MATLAB Function blocks

Command-Line Information

Property: RAMMappingThreshold
Type: integer
Value: integer greater than or equal to 0
Default: 256

See Also

• RAMMappingThreshold

• UseRAM

• MapPersistentVarsToRAM
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Max oversampling
Specify the maximum oversampling ratio. The oversampling ratio is the
sample rate after optimizations divided by the original model sample rate.

Use Max oversampling with Max computation latency to prevent
or reduce overclocking by constraining resource sharing and streaming
optimizations.

Settings
Default: 0

0
Do not set a limit on the maximum sample rate.

1
Do not allow oversampling.

N, where N is an integer greater than 1
Allow oversampling up to N times the original model sample rate.

Command-Line Information

Property: MaxOversampling
Type: integer
Value: integer greater than or equal to 0
Default: 0

See Also

• MaxOversampling

• MaxComputationLatency

9-61



9 Code Generation Options in the HDL Coder Dialog Boxes

Max computation latency
Specify the maximum number of time steps for which your inputs are
guaranteed to be stable.

Use Max computation latency with Max oversampling to prevent
or reduce overclocking by constraining resource sharing and streaming
optimizations.

Settings
Default: 1

1
DUT input data can change every cycle.

N, where N is an integer greater than 1
DUT input data can change every N cycles.

Command-Line Information

Property: MaxComputationLatency
Type: integer
Value: positive integer
Default: 1

See Also

• MaxComputationLatency

• MaxOversampling
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Represent constant values by aggregates
Specify whether constants in VHDL code are represented by aggregates,
including constants that are less than 32 bits.

Settings
Default: Off

On
The coder represents constants as aggregates. The following VHDL
constant declarations show a scalar less than 32 bits represented as an
aggregate:

GainFactor_gainparam <= (14 => '1', OTHERS => '0');

Off
The coder represents constants less than 32 bits as scalars and
constants greater than or equal to 32 bits as aggregates. The following
VHDL code was generated by default for a value less than 32 bits:

GainFactor_gainparam <= to_signed(16384, 16);

Dependencies
This option is enabled when the target language (specified by the Language
option) is VHDL.

Command-Line Information

Property: UseAggregatesForConst
Type: string
Value: 'on' | 'off'
Default: 'off'

See Also
UseAggregatesForConst
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Use rising_edge for registers
Specify whether or not generated code uses the VHDL rising_edge function
to check for rising edges when operating on registers.

Settings
Default: Off

On
Generated code uses the VHDL rising_edge function to check for rising
edges when operating on registers.

Off
Generated code checks for clock events when operating on registers.

Dependencies
This option is enabled when the target language (specified by the Language
option) is VHDL.

Command-Line Information

Property: UseRisingEdge
Type: string
Value: 'on' | 'off'
Default: 'off'

See Also
UseRisingEdge
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Loop unrolling
Specify whether VHDL FOR and GENERATE loops are unrolled and omitted
from generated VHDL code.

Settings
Default: Off

On
Unroll and omit FOR and GENERATE loops from the generated VHDL
code. (In Verilog code, loops are always unrolled.)

Off
Include FOR and GENERATE loops in the generated VHDL code.

Tip
If you are using an electronic design automation (EDA) tool that does not
support GENERATE loops, select this option to omit loops from your generated
VHDL code.

Dependency
This option is enabled when the target language (specified by the Language
option) is VHDL.

Command-Line Information

Property: LoopUnrolling
Type: string
Value: 'on' | 'off'
Default: 'off'

See Also
LoopUnrolling
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Use Verilog `timescale directives
Specify use of compiler `timescale directives in generated Verilog code.

Settings
Default: On

On
Use compiler `timescale directives in generated Verilog code.

Off
Suppress the use of compiler `timescale directives in generated Verilog
code.

Tip
The `timescale directive provides a way of specifying different delay values
for multiple modules in a Verilog file. This setting does not affect the
generated test bench.

Dependency
This option is enabled when the target language (specified by the Language
option) is Verilog.

Command-Line Information

Property: UseVerilogTimescale
Type: string
Value: 'on' | 'off'
Default: 'on'

See Also
UseVerilogTimescale
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Inline VHDL configuration
Specify whether generated VHDL code includes inline configurations.

Settings
Default: On

On
Include VHDL configurations in files that instantiate a component.

Off
Suppress the generation of configurations and require user-supplied
external configurations. Use this setting if you are creating your own
VHDL configuration files.

Tip
HDL configurations can be either inline with the rest of the VHDL code for
an entity or external in separate VHDL source files. By default, the coder
includes configurations for a model within the generated VHDL code. If you
are creating your own VHDL configuration files, suppress the generation of
inline configurations.

Dependencies
This option is enabled when the target language (specified by the Language
option) is VHDL.

Command-Line Information

Property: InlineConfigurations
Type: string
Value: 'on' | 'off'
Default: 'on'

See Also
InlineConfigurations
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Concatenate type safe zeros
Specify use of syntax for concatenated zeros in generated VHDL code.

Settings
Default: On

On
Use the type-safe syntax, '0' & '0', for concatenated zeros. Typically,
this syntax is preferred.

Off
Use the syntax "000000..." for concatenated zeros. This syntax can be
easier to read and more compact, but it can lead to ambiguous types.

Dependencies
This option is enabled when the target language (specified by the Language
option) is VHDL.

Command-Line Information

Property: SafeZeroConcat
Type: string
Value: 'on' | 'off'
Default: 'on'

See Also
SafeZeroConcat
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Emit time/date stamp in header
Specify whether or not to include time and date information in the generated
HDL file header.

Settings
Default: On

On
Include time/date stamp in the generated HDL file header.

-- ----------------------------------------------------
--
-- File Name: hdlsrc\symmetric_fir.vhd
-- Created: 2011-02-14 07:21:36
--

Off
Omit time/date stamp in the generated HDL file header.

-- ----------------------------------------------------
--
-- File Name: hdlsrc\symmetric_fir.vhd
--

By omitting the time/date stamp in the file header, you can more easily
determine if two HDL files contain identical code. You can also avoid
redundant revisions of the same file when checking in HDL files to a
source code management (SCM) system.

Command-Line Information

Property: DateComment
Type: string
Value: 'on' | 'off'
Default: 'on'

See Also
DateComment
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HDL coding standard
Specify an HDL coding standard.

Settings
Default: None

None
Generate generic synthesizable HDL code.

Industry
Generate HDL code that follows the industry standard rules supported
by the coder. When this option is enabled, the coder generates a
standard compliance report.

Command-Line Information

Property: HDLCodingStandard
Type: string
Value: 'None' | 'Industry'
Default: 'None'

See Also
HDLCodingStandard
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Scalarize vector ports
Flatten vector ports into a structure of scalar ports in VHDL code

Settings
Default: Off

On
When generating code for a vector port, generate a structure of scalar
ports.

Off
When generating code for a vector port, generate a type definition and
port declaration for the vector port.

Dependencies
This option is enabled when the target language (specified by the Language
option) is VHDL.

Command-Line Information

Property: ScalarizePorts
Type: string
Value: 'on' | 'off'
Default: 'off'

See Also
ScalarizePorts
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Minimize intermediate signals
Specify whether to optimize HDL code for debuggability or code coverage.

Settings
Default: Off

On
Optimize for code coverage by minimizing intermediate signals. For
example, suppose that the generated code with this setting off is:

const3 <= to_signed(24, 7);

subtractor_sub_cast <= resize(const3, 8);

subtractor_sub_cast_1 <= resize(delayout, 8);

subtractor_sub_temp <= subtractor_sub_cast - subtractor_sub_cast_1;

With this setting on, the coder optimizes the output to:

subtractor_sub_temp <= 24 - (resize(delayout, 8));

The coder removes the intermediate signals const3,
subtractor_sub_cast, and subtractor_sub_cast_1.

Off
Optimize for debuggability by preserving intermediate signals.

Command-Line Information

Property: MinimizeIntermediateSignals
Type: string
Value: 'on' | 'off'
Default: 'off'

See Also
MinimizeIntermediateSignals
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Include requirements in block comments
Enable or disable generation of requirements comments as comments in code
or code generation reports

Settings
Default: On

On
If the model contains requirements comments, include them as
comments in code or code generation reports. See “Requirements
Comments and Hyperlinks” on page 16-35.

Off
Do not include requirements as comments in code or code generation
reports.

Command-Line Information

Property: RequirementComments
Type: string
Value: 'on' | 'off'
Default: 'on'

See Also
RequirementComments
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Inline MATLAB Function block code
Inline HDL code for MATLAB Function blocks.

Settings
Default: Off

On
Inline HDL code for MATLAB Function blocks to avoid instantiation
of code for custom blocks.

Off
Instantiate HDL code for MATLAB Function blocks and do not inline.

Command-Line Information

Property: InlineMATLABBlockCode
Type: string
Value: 'on' | 'off'
Default: 'off'

See Also
InlineMATLABBlockCode
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Generate parameterized HDL code from masked
subsystem
Generate reusable HDL code for subsystems with the same tunable mask
parameters, but with different values.

Settings
Default: Off

On
Generate one HDL file for multiple masked subsystems with different
values for tunable mask parameters. The coder automatically detects
atomic subsystems with tunable mask parameters that are shareable.

Inside the subsystem, you can use the mask parameter only in the
following blocks and parameters.

Block Parameter Limitation

Constant Constant value on
the Main tab of the
dialog box

None

Gain Gain on the Main
tab of the dialog box

Parameter data
type must be the
same for all Gain
blocks.

Off
Generate a separate HDL file for each masked subsystem.

Command-Line Information

Property: MaskParameterAsGeneric
Type: string
Value: 'on' | 'off'
Default: 'off'
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See Also
MaskParameterAsGeneric

Initialize all RAM blocks
Enable or suppress generation of initial signal value for RAM blocks.

Settings
Default: On

On
For RAM blocks, generate initial values of '0' for both the RAM signal
and the output temporary signal.

Off
For RAM blocks, do not generate initial values for either the RAM signal
or the output temporary signal.

Command-Line Information

Property: InitializeBlockRAM
Type: string
Value: 'on' | 'off'
Default: 'on'

See Also
InitializeBlockRAM

RAM Architecture
Select RAM architecture with clock enable, or without clock enable, for all
RAMs in DUT subsystem.

Settings
Default: RAM with clock enable

Select one of the following options from the menu:
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• RAM with clock enable: Generate RAMs with clock enable.

• Generic RAM without clock enable: Generate RAMs without clock
enable.

Command-Line Information

Property: RAMArchitecture
Type: string
Value: 'WithClockEnable' | 'WithoutClockEnable'
Default: 'WithClockEnable'

See Also
RAMArchitecture
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HDL Code Generation Pane: Test Bench

In this section...

“Test Bench Overview” on page 9-80

“HDL test bench” on page 9-81

“Cosimulation blocks” on page 9-82

“Cosimulation model for use with:” on page 9-84
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In this section...

“Test bench name postfix” on page 9-85

“Force clock” on page 9-86

“Clock high time (ns)” on page 9-87

“Clock low time (ns)” on page 9-88

“Hold time (ns)” on page 9-89

“Setup time (ns)” on page 9-90

“Force clock enable” on page 9-91

“Clock enable delay (in clock cycles)” on page 9-92

“Force reset” on page 9-94

“Reset length (in clock cycles)” on page 9-95

“Hold input data between samples” on page 9-97

“Initialize test bench inputs” on page 9-98

“Multi-file test bench” on page 9-99

“Test bench reference postfix” on page 9-101

“Test bench data file name postfix” on page 9-102

“Use file I/O to read/write test bench data” on page 9-103

“Ignore output data checking (number of samples)” on page 9-103

9-79



9 Code Generation Options in the HDL Coder Dialog Boxes

Test Bench Overview
The Test Bench pane lets you set options that determine characteristics of
generated test bench code.

Generate Test Bench Button
The Generate Test Bench button initiates test bench generation for the
system selected in the Generate HDL for menu. See also makehdltb.
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HDL test bench
Enable or disable HDL test bench generation.

Settings
Default: On

On
Enable generation of HDL test bench code that can interface to the DUT.

Off
Suppress generation of HDL test bench code.

Dependencies
This check box enables the options in the Configuration section of the Test
Bench pane.

See Also
Generating VHDL Test Bench Code
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Cosimulation blocks
Generate a model containing HDL Cosimulation block(s) for use in testing
the DUT.

Settings
Default: Off

On
When you select this option, the coder generates and opens a model that
contains one or more HDL Cosimulation blocks. The coder generates
cosimulation blocks if your installation includes one or more of the
following:

• HDL Verifier™ for use with Mentor Graphics ModelSim®

• HDL Verifier for use with Cadence Incisive®

The coder configures the generated HDL Cosimulation blocks to
conform to the port and data type interface of the DUT selected for code
generation. By connecting an HDL Cosimulation block to your model
in place of the DUT, you can cosimulate your design with the desired
simulator.

Off
Do not generate HDL Cosimulation blocks.

Dependencies
This check box enables the other options in the Configuration section of
the Test Bench pane.

Command-Line Information

Property: GenerateCoSimBlock
Type: string
Value: 'on' | 'off'
Default: 'off'
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See Also
GenerateCoSimBlock
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Cosimulation model for use with:
Generate model containing HDL Cosimulation block for cosimulation

Settings
Default: Off

On
Selecting this option enables the dropdown menu to the right of the
check box. Select one of the following options from the menu:

• Mentor Graphics ModelSim: This option is the default. If your
installation includes HDL Verifier for use with Mentor Graphics
ModelSim, the coder generates and opens a Simulink model that
contains an HDL Cosimulation block for Mentor Graphics ModelSim.

• Cadence Incisive: If your installation includes HDL Verifier for use
with Cadence Incisive, the coder generates and opens a Simulink
model that contains an HDL Cosimulation block for Cadence Incisive.

Off
Do not generate HDL Cosimulation model.

Dependencies
This check box enables the other options in the Configuration section of
the Test Bench pane.

Command-Line Information

Property: GenerateCosimModel
Type: string
Value: 'on' | 'off'
Default: 'off'

See Also
GenerateCoSimModel
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Test bench name postfix
Specify a suffix appended to the test bench name.

Settings
Default: _tb

For example, if the name of your DUT is my_test, the coder adds the default
postfix _tb to form the name my_test_tb.

Command-Line Information

Property: TestBenchPostFix
Type: string
Default: '_tb'

See Also
TestBenchPostFix
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Force clock
Specify whether the test bench forces clock input signals.

Settings
Default: On

On
The test bench forces the clock input signals. When this option is
selected, the clock high and low time settings control the clock waveform.

Off
A user-defined external source forces the clock input signals.

Dependencies
This property enables the Clock high time and Clock high time options.

Command-Line Information

Property: ForceClock
Type: string
Value: 'on' | 'off'
Default: 'on'

See Also
ForceClock
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Clock high time (ns)
Specify the period, in nanoseconds, during which the test bench drives clock
input signals high (1).

Settings
Default: 5

The Clock high time and Clock low time properties define the period and
duty cycle for the clock signal. Using the defaults, the clock signal is a square
wave (50% duty cycle) with a period of 10 ns.

Dependency
This parameter is enabled when Force clock is selected.

Command-Line Information

Property: ClockHighTime
Type: integer
Value: A positive integer
Default: 5

See Also
ClockHighTime
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Clock low time (ns)
Specify the period, in nanoseconds, during which the test bench drives clock
input signals low (0).

Settings
Default: 5

The Clock high time and Clock low time properties define the period and
duty cycle for the clock signal. Using the defaults, the clock signal is a square
wave (50% duty cycle) with a period of 10 ns.

Dependency
This parameter is enabled when Force clock is selected.

Command-Line Information

Property: ClockLowTime
Type: integer
Value: A positive integer
Default: 5

See Also
ClockLowTime
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Hold time (ns)
Specify a hold time, in nanoseconds, for input signals and forced reset input
signals.

Settings
Default: 2 (given the default clock period of 10 ns)

The hold time defines the number of nanoseconds that reset input signals and
input data are held past the clock rising edge. The hold time is expressed as
a positive integer or double (with a maximum of 6 significant digits after
the decimal point).

Tips

• The specified hold time must be less than the clock period (specified by the
Clock high time and Clock low time properties).

• This option applies to reset input signals only if Force reset is selected.

Command-Line Information

Property: HoldTime
Type: integer
Value: A positive integer
Default: 2

See Also
HoldTime
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Setup time (ns)
Display setup time for data input signals.

Settings
Default: None

This is a display-only field, showing a value computed as (clock period -
HoldTime) in nanoseconds.

Dependency
The value displayed in this field depends on the clock rate and the values
of the Hold time property.

Command-Line Information
Because this is a display-only field, a corresponding command-line property
does not exist.

See Also
HoldTime
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Force clock enable
Specify whether the test bench forces clock enable input signals.

Settings
Default: On

On
The test bench forces the clock enable input signals to active-high (1) or
active-low (0), depending on the setting of the clock enable input value.

Off
A user-defined external source forces the clock enable input signals.

Dependencies
This property enables the Clock enable delay (in clock cycles) option.

Command-Line Information

Property: ForceClockEnable
Type: string
Value: 'on' | 'off'
Default: 'on'

See Also
ForceClockEnable
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Clock enable delay (in clock cycles)
Define elapsed time (in clock cycles) between deassertion of reset and
assertion of clock enable.

Settings
Default: 1

The Clock enable delay (in clock cycles) property defines the number of
clock cycles elapsed between the time the reset signal is deasserted and the
time the clock enable signal is first asserted. In the figure below, the reset
signal (active-high) deasserts after 2 clock cycles and the clock enable asserts
after a clock enable delay of 1 cycle (the default).

Dependency
This parameter is enabled when Force clock enable is selected.

Command-Line Information

Property: TestBenchClockEnableDelay
Type: integer
Default: 1
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See Also
TestBenchClockEnableDelay
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Force reset
Specify whether the test bench forces reset input signals.

Settings
Default: On

On
The test bench forces the reset input signals.

Off
A user-defined external source forces the reset input signals.

Tips
If you select this option, you can use the Hold time option to control the
timing of a reset.

Command-Line Information

Property: ForceReset
Type: string
Value: 'on' | 'off'
Default: 'on'

See Also
ForceReset

9-94



HDL Code Generation Pane: Test Bench

Reset length (in clock cycles)
Define length of time (in clock cycles) during which reset is asserted.

Settings
Default: 2

The Reset length (in clock cycles) property defines the number of clock
cycles during which reset is asserted. Reset length (in clock cycles) must
be an integer greater than or equal to 0. The following figure illustrates the
default case, in which the reset signal (active-high) is asserted for 2 clock
cycles.

Dependency
This parameter is enabled when Force reset is selected.

Command-Line Information

Property: Resetlength
Type: integer
Default: 2
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See Also
ResetLength
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Hold input data between samples
Specify how long subrate signal values are held in valid state.

Settings
Default: On

On
Data values for subrate signals are held in a valid state across N
base-rate clock cycles, where N is the number of base-rate clock cycles
that elapse per subrate sample period. (N is >= 2.)

Off
Data values for subrate signals are held in a valid state for only one
base-rate clock cycle. For the subsequent base-rate cycles, data is in an
unknown state (expressed as 'X') until leading edge of the next subrate
sample period.

Tip
In most cases, the default (On) is the best setting for Hold input data
between samples. This setting matches the behavior of a Simulink
simulation, in which subrate signals are held valid through each base-rate
clock period.

In some cases (for example modeling memory or memory interfaces), it is
desirable to clear Hold input data between samples. In this way you can
obtain diagnostic information about when data is in an invalid ('X') state.

Command-Line Information

Property: HoldInputDataBetweenSamples
Type: string
Value: 'on' | 'off'
Default: 'on'

See Also
HoldInputDataBetweenSamples
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Initialize test bench inputs
Specify initial value driven on test bench inputs before data is asserted to
DUT.

Settings
Default: Off

On
Initial value driven on test bench inputs is'0'.

Off
Initial value driven on test bench inputs is 'X' (unknown).

Command-Line Information

Property: InitializeTestBenchInputs
Type: string
Value: 'on' | 'off'
Default: 'off'

See Also
InitializeTestBenchInputs
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Multi-file test bench
Divide generated test bench into helper functions, data, and HDL test bench
code files.

Settings
Default: Off

On
Write separate files for test bench code, helper functions, and test bench
data. The file names are derived from the name of the DUT, the Test
bench name postfix property, and the Test bench data file name
postfix property as follows:

DUTname_TestBenchPostfix_TestBenchDataPostfix

For example, if the DUT name is symmetric_fir, and the target
language is VHDL, the default test bench file names are:

• symmetric_fir_tb.vhd: test bench code

• symmetric_fir_tb_pkg.vhd: helper functions package

• symmetric_fir_tb_data.vhd: data package

If the DUT name is symmetric_fir and the target language is Verilog,
the default test bench file names are:

• symmetric_fir_tb.v: test bench code

• symmetric_fir_tb_pkg.v: helper functions package

• symmetric_fir_tb_data.v: test bench data

Off
Write a single test bench file containing the HDL test bench code, helper
functions, and test bench data.

Dependency
When this property is selected, Test bench data file name postfix is
enabled.
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Command-Line Information

Property: MultifileTestBench
Type: string
Value: 'on' | 'off'
Default: 'off'

See Also
MultifileTestBench

9-100



HDL Code Generation Pane: Test Bench

Test bench reference postfix
Specify a string appended to names of reference signals generated in test
bench code.

Settings
Default: '_ref'

Reference signal data is represented as arrays in the generated test bench
code. The string specified by Test bench reference postfix is appended to
the generated signal names.

Command-Line Information

Parameter: TestBenchReferencePostFix
Type: string
Default: '_ref'

See Also
TestBenchReferencePostFix
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Test bench data file name postfix
Specify suffix added to test bench data file name when generating multi-file
test bench.

Settings
Default:'_data'

The coder applies the Test bench data file name postfix string only
when generating a multi-file test bench (i.e., when Multi-file test bench
is selected).

For example, if the name of your DUT is my_test, and Test bench name
postfix has the default value _tb, the coder adds the postfix _data to form
the test bench data file name my_test_tb_data.

Dependency
This parameter is enabled by Multi-file test bench.

Command-Line Information

Property: TestBenchDataPostFix
Type: string
Default: '_data'

See Also
TestBenchDataPostFix
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Use file I/O to read/write test bench data
Create and use data files for reading and writing test bench input and output
data.

Settings
Default: Off

On
Create and use data files for reading and writing test bench input and
output data.

Off
Use constants in the test bench for DUT stimulus and reference data.

See Also
UseFileIOInTestBench

Command-Line Information

Property: UseFileIOInTestBench
Type: string
Value: 'on' | 'off'
Default: 'off'

Ignore output data checking (number of samples)
Specify number of samples during which output data checking is suppressed.

Settings
Default: 0

The value must be a positive integer.

When the value N of Ignore output data checking (number of samples)
is greater than zero, the test bench suppresses output data checking for the
first N output samples after the clock enable output (ce_out) is asserted.
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When using pipelined block implementations, output data may be in an
invalid state for some number of samples. To avoid spurious test bench errors,
determine this number and set Ignore output data checking (number of
samples) accordingly.

Be careful to specify N as a number of samples, not as a number of clock cycles.
For a single-rate model, these are equivalent, but they are not equivalent
for a multirate model.

You should use Ignore output data checking (number of samples) in
cases where there is a state (register) initial condition in the HDL code that
does not match the Simulink state, including the following specific cases:

• When you specify the 'DistributedPipelining','on' parameter for the
MATLAB Function block (see “Distributed Pipeline Insertion for MATLAB
Function Blocks” on page 20-42)

• When you specify the {'ResetType','None'} parameter for the following
block types:

- commcnvintrlv2/Convolutional Deinterleaver

- commcnvintrlv2/Convolutional Interleaver

- commcnvintrlv2/General Multiplexed Deinterleaver

- commcnvintrlv2/General Multiplexed Interleaver

- dspsigops/Delay

- simulink/Additional Math & Discrete/Additional Discrete/Unit Delay
Enabled

- simulink/Commonly Used Blocks/Unit Delay

- simulink/Discrete/Delay

- simulink/Discrete/Memory

- simulink/Discrete/Tapped Delay

- simulink/User-Defined Functions/MATLAB Function

- sflib/Chart

- sflib/Truth Table
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• When generating a black box interface to existing manually written HDL
code

Command-Line Information

Property: IgnoreDataChecking
Type: integer
Default: 0

See Also
IgnoreDataChecking
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HDL Code Generation Pane: EDA Tool Scripts

In this section...

“EDA Tool Scripts Overview” on page 9-108

“Generate EDA scripts” on page 9-109

“Generate multicycle path information” on page 9-110

“Compile file postfix” on page 9-111

“Compile initialization” on page 9-112

“Compile command for VHDL” on page 9-113

“Compile command for Verilog” on page 9-114

“Compile termination” on page 9-115

“Simulation file postfix” on page 9-116

“Simulation initialization” on page 9-117
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In this section...

“Simulation command” on page 9-118

“Simulation waveform viewing command” on page 9-119

“Simulation termination” on page 9-120

“Choose synthesis tool” on page 9-121

“Synthesis file postfix” on page 9-123

“Synthesis initialization” on page 9-124

“Synthesis command” on page 9-125

“Synthesis termination” on page 9-126

“Choose HDL lint tool” on page 9-126

“Lint initialization” on page 9-127

“Lint command” on page 9-128

“Lint termination” on page 9-128
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EDA Tool Scripts Overview
The EDA Tool Scripts pane lets you set the options that control generation
of script files for third-party HDL simulation and synthesis tools.
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Generate EDA scripts
Enable generation of script files for third-party electronic design automation
(EDA) tools. These scripts let you compile and simulate generated HDL code
and/or synthesize generated HDL code.

Settings
Default: On

On
Generation of script files is enabled.

Off
Generation of script files is disabled.

Command-Line Information

Parameter: EDAScriptGeneration
Type: string
Value: 'on' | 'off'
Default: 'on'

See Also

• “Control Script Generation with the EDA Tool Scripts Pane” on page 21-9

• EDAScriptGeneration
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Generate multicycle path information
Generate a file that reports multicycle path constraint information.

Settings
Default: Off

On
Generate a text file that reports multicycle path constraint information,
for use with synthesis tools.

Off
Do not generate a multicycle path information file.

Command-Line Information

Parameter: MulticyclePathInfo
Type: string
Value: 'on' | 'off'
Default: 'off'

See Also

• Generating a Multicycle Path Information File

• MulticyclePathInfo
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Compile file postfix
Specify a postfix string appended to the DUT or test bench name to form the
compilation script file name.

Settings
Default: _compile.do

For example, if the name of the device under test or test bench is
my_design, the coder adds the postfix _compile.do to form the name
my_design_compile.do.

Command-Line Information

Property: HDLCompileFilePostfix
Type: string
Default: '_compile.do'

See Also

• “Control Script Generation with the EDA Tool Scripts Pane” on page 21-9

• HDLCompileFilePostfix
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Compile initialization
Specify a format string passed to fprintf to write the Init section of the
compilation script.

Settings
Default: vlib %s\n

The Init phase of the script performs required setup actions, such as creating
a design library or a project file.

The argument %s is the contents of the 'VHDLLibraryName' property, which
defaults to'work'. You can override the default Init string ('vlib work\n'
by changing the value of 'VHDLLibraryName'.

Command-Line Information

Property: HDLCompileInit
Type: string
Default: 'vlib %s\n'

See Also

• “Control Script Generation with the EDA Tool Scripts Pane” on page 21-9

• HDLCompileInit
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Compile command for VHDL
Specify a format string passed to fprintf to write the Cmd section of the
compilation script for VHDL files.

Settings
Default: vcom %s %s\n

The command-per-file phase (Cmd) of the script is called iteratively, once per
generated HDL file or once per signal. On each call, a different file or signal
name is passed in.

The two arguments in the compile command are the contents of the
SimulatorFlags property and the file name of the current entity or module.
To omit the flags, set SimulatorFlags to '' (the default).

Command-Line Information

Property: HDLCompileVHDLCmd
Type: string
Default: 'vcom %s %s\n'

See Also

• “Control Script Generation with the EDA Tool Scripts Pane” on page 21-9

• HDLCompileVHDLCmd
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Compile command for Verilog
Specify a format string passed to fprintf to write the Cmd section of the
compilation script for Verilog files.

Settings
Default: vlog %s %s\n

The command-per-file phase (Cmd) of the script is called iteratively, once per
generated HDL file or once per signal. On each call, a different file or signal
name is passed in.

The two arguments in the compile command are the contents of the
SimulatorFlags property and the file name of the current entity or module.
To omit the flags, set SimulatorFlags property to '' (the default).

Command-Line Information

Property: HDLCompileVerilogCmd
Type: string
Default: 'vlog %s %s\n'

See Also

• “Control Script Generation with the EDA Tool Scripts Pane” on page 21-9

• HDLCompileVerilogCmd
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Compile termination
Specify a format string passed to fprintf to write the termination portion of
the compilation script.

Settings
Default: empty string

The termination phase (Term) is the final execution phase of the script. One
application of this phase is to execute a simulation of HDL code that was
compiled in the Cmd phase. The Term phase does not take arguments.

Command-Line Information

Property: HDLCompileTerm
Type: string
Default: ''

See Also

• “Control Script Generation with the EDA Tool Scripts Pane” on page 21-9

• HDLCompileTerm
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Simulation file postfix
Specify a postfix string appended to the DUT or test bench name to form the
simulation script file name.

Settings
Default: _sim.do

For example, if the name of the device under test or test bench is my_design,
the coder adds the postfix _sim.do to form the name my_design_sim.do.

Command-Line Information

Property: HDLSimFilePostfix
Type: string
Default: '_sim.do'

See Also

• “Control Script Generation with the EDA Tool Scripts Pane” on page 21-9

• HDLSimFilePostfix
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Simulation initialization
Specify a format string passed to fprintf to write the initialization section of
the simulation script.

Settings
Default: The default string is

['onbreak resume\nonerror resume\n']

The Init phase of the script performs required setup actions, such as creating
a design library or a project file.

Command-Line Information

Property: HDLSimInit
Type: string
Default: ['onbreak resume\nonerror resume\n']

See Also

• “Control Script Generation with the EDA Tool Scripts Pane” on page 21-9

• HDLSimInit
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Simulation command
Specify a format string passed to fprintf to write the simulation command.

Settings
Default: vsim -novopt work.%s\n

The implicit argument is the top-level module or entity name.

Command-Line Information

Property: HDLSimCmd
Type: string
Default: 'vsim -novopt work.%s\n'

See Also

• “Control Script Generation with the EDA Tool Scripts Pane” on page 21-9

• HDLSimCmd
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Simulation waveform viewing command
Specify the waveform viewing command written to simulation script.

Settings
Default: add wave sim:%s\n

The implicit argument adds the signal paths for the DUT top-level input,
output, and output reference signals.

Command-Line Information

Property: HDLSimViewWaveCmd
Type: string
Default: 'add wave sim:%s\n'

See Also

• “Control Script Generation with the EDA Tool Scripts Pane” on page 21-9

• HDLSimViewWaveCmd
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Simulation termination
Specify a format string passed to fprintf to write the termination portion of
the simulation script.

Settings
Default: run -all\n

The termination phase (Term) is the final execution phase of the script. One
application of this phase is to execute a simulation of HDL code that was
compiled in the Cmd phase. The Term phase does not take arguments.

Command-Line Information

Property: HDLSimTerm
Type: string
Default: 'run -all\n'

See Also

• “Control Script Generation with the EDA Tool Scripts Pane” on page 21-9

• HDLSimTerm
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Choose synthesis tool
Enable or disable generation of synthesis scripts, and select the synthesis tool
for which the coder generates scripts.

Settings
Default: None

None
When you select None, the coder does not generate a synthesis script.
The coder clears and disables the fields in the Synthesis script pane.

Xilinx ISE
Generate a synthesis script for Xilinx ISE. When you select this option,
the coder:

• Enables the fields in the Synthesis script pane.

• Sets Synthesis file postfix to _ise.tcl

• Fills in the Synthesis initialization, Synthesis command and
Synthesis termination fields with TCL script code for the tool.

Microsemi Libero
Generate a synthesis script for Microsemi Libero. When you select this
option, the coder:

• Enables the fields in the Synthesis script pane.

• Sets Synthesis file postfix to _libero.tcl

• Fills in the Synthesis initialization, Synthesis command and
Synthesis termination fields with TCL script code for the tool.

Mentor Graphics Precision
Generate a synthesis script for Mentor Graphics Precision. When you
select this option, the coder:

• Enables the fields in the Synthesis script pane.

• Sets Synthesis file postfix to _precision.tcl

• Fills in the Synthesis initialization, Synthesis command and
Synthesis termination fields with TCL script code for the tool.
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Altera Quartus II
Generate a synthesis script for Altera Quartus II. When you select this
option, the coder:

• Enables the fields in the Synthesis script pane.

• Sets Synthesis file postfix to _quartus.tcl

• Fills in the Synthesis initialization, Synthesis command and
Synthesis termination fields with TCL script code for the tool.

Synopsys Synplify Pro
Generate a synthesis script for Synopsys Synplify Pro. When you select
this option, the coder:

• Enables the fields in the Synthesis script pane.

• Sets Synthesis file postfix to _synplify.tcl

• Fills in the Synthesis initialization, Synthesis command and
Synthesis termination fields with TCL script code for the tool.

Custom
Generate a custom synthesis script. When you select this option, the
coder:

• Enables the fields in the Synthesis script pane.

• Sets Synthesis file postfix to _custom.tcl

• Fills in the Synthesis initialization, Synthesis command and
Synthesis termination fields with example TCL script code.

Command-Line Information

Property: HDLSynthTool
Type: string
Value: 'None' | 'ISE' | 'Libero' | 'Precision' | 'Quartus' |
'Synplify' | 'Custom'
Default: 'None'

See Also
HDLSynthTool
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Synthesis file postfix
Specify a postfix string appended to file name for generated synthesis scripts.

Settings
Default: None.

Your choice of synthesis tool (from the Choose synthesis tool pulldown
menu) sets the postfix for generated synthesis file names to one of the
following:

_ise.tcl
_libero.tcl
_precision.tcl
_quartus.tcl
_synplify.tcl
_custom.tcl

For example, if the DUT name is my_designand the choice of synthesis tool
is Synopsys Synplify Pro, the coder adds the postfix _synplify.tcl to form
the name my_design_synplify.tcl.

Command-Line Information

Property: HDLSynthFilePostfix
Type: string
Default: none

See Also

• “Control Script Generation with the EDA Tool Scripts Pane” on page 21-9

• HDLSynthFilePostfix
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Synthesis initialization
Specify a format string passed to fprintf to write the initialization section of
the synthesis script.

Settings
Default: none.

Your choice of synthesis tool (from the Choose synthesis tool pulldown
menu) sets the Synthesis initialization string. The default string is a
format string passed to fprintf to write the Init section of the synthesis
script. The default string is a synthesis project creation command. The
implicit argument is the top-level module or entity name. The content of the
string is specific to the selected synthesis tool.

Command-Line Information

Property: HDLSynthInit
Type: string
Default: none

See Also

• “Control Script Generation with the EDA Tool Scripts Pane” on page 21-9

• HDLSynthInit
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Synthesis command
Specify a format string passed to fprintf to write the synthesis command.

Settings
Default: none.

Your choice of synthesis tool (from the Choose synthesis tool pulldown
menu) sets the Synthesis command string. The default string is a format
string passed to fprintf to write the Cmd section of the synthesis script. The
argument is the filename of the entity or module. The content of the string is
specific to the selected synthesis tool.

Command-Line Information

Property: HDLSynthCmd
Type: string
Default: none

See Also

• “Control Script Generation with the EDA Tool Scripts Pane” on page 21-9

• HDLSynthCmd
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Synthesis termination
Specify a format string passed to fprintf to write the termination portion of
the synthesis script.

Settings
Default: none

Your choice of synthesis tool (from the Choose synthesis tool pulldown
menu) sets the Synthesis termination string. The default string is a format
string passed to fprintf to write the Term section of the synthesis script. The
termination string does not take arguments. The content of the string is
specific to the selected synthesis tool.

Command-Line Information

Property: HDLSynthTerm
Type: string
Default: none

See Also

• “Control Script Generation with the EDA Tool Scripts Pane” on page 21-9

• HDLSynthTerm

Choose HDL lint tool
Enable or disable generation of an HDL lint script, and select the HDL lint
tool for which the coder generates a script.

After you select an HDL lint tool, the Lint initialization, Lint command
and Lint termination fields are enabled.

Settings
Default: None
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None
When you select None, the coder does not generate a lint script. The
coder clears and disables the fields in the Lint script pane.

SpyGlass
Generate a lint script for Atrenta SpyGlass.

Leda
Generate a lint script for Synopsys Leda.

Custom
Generate a custom synthesis script.

Command-Line Information

Property: HDLLintTool
Type: string
Value: 'None' | 'SpyGlass' | 'Leda' | 'Custom'
Default: 'None'

See Also
• “Generate an HDL Lint Tool Script” on page 17-11

• HDLLintTool

Lint initialization
Enter an initialization string for your HDL lint script.

Command-Line Information

Property: HDLLintInit
Type: string
Default: none

See Also
• “Generate an HDL Lint Tool Script” on page 17-11

• HDLLintInit
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Lint command
Enter the command for your HDL lint script.

Command-Line Information

Property: HDLLintCmd
Type: string
Default: none

See Also
• “Generate an HDL Lint Tool Script” on page 17-11

• HDLLintCmd

Lint termination
Enter a termination string for your HDL lint script.

Command-Line Information

Property: HDLLintTerm
Type: string
Default: none

See Also
• “Generate an HDL Lint Tool Script” on page 17-11

• HDLLintTerm
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Set and View HDL Block Parameters

In this section...

“Set HDL Block Parameters from the GUI” on page 10-2

“Set HDL Block Parameters from the Command Line” on page 10-2

“View All HDL Block Parameters” on page 10-3

“View Non-Default HDL Block Parameters” on page 10-4

For a list of HDL block properties, see “Block Implementation Parameters” on
page 11-50.

Set HDL Block Parameters from the GUI
You can view and set HDL-related block properties, such as implementation
and implementation parameters, at the individual block level. To open the
HDL Properties dialog box:

1 Right-click the block and select HDL Code > HDL Block Properties.

The HDL Properties dialog box opens.

2 Modify the block properties as desired.

3 Click OK.

Set HDL Block Parameters from the Command Line
hdlset_param(path,Name,Value) sets HDL-related parameters in the block
or model referenced by path. One or more Name,Value pair arguments specify
the parameters to be set, and their values. You can specify several name and
value pair arguments in any order as Name1,Value1, ,NameN,ValueN.

For example, to set the sharing factor to 2 and the architecture to Tree for a
block in your model:

1 Open the model and select the block.

2 Enter the following at the command line:
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hdlset_param (gcb, 'SharingFactor', 2, 'Architecture', 'Tree')

To view the architecture for the same block, enter the following at the
command line:

hdlget_param(gcb,'Architecture')

You can also assign the returned HDL block parameters to a cell array. In
the following example, hdlget_param returns all HDL block parameters and
values to the cell array p.

p = hdlget_param(gcb,'all')

p =

'Architecture' 'Linear' 'InputPipeline' [0] 'OutputPipeline' [0]

See also hdlset_param and hdlget_param.

View All HDL Block Parameters
hdldispblkparams displays the HDL block parameters available for a
specified block.

The following example displays HDL block parameters and values for the
currently selected block.

hdldispblkparams(gcb,'all')

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

HDL Block Parameters ('simplevectorsum/vsum/Sum of

Elements')

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

Implementation

Architecture : Linear

Implementation Parameters

InputPipeline : 0
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OutputPipeline : 0

See also hdldispblkparams.

View Non-Default HDL Block Parameters
The following example displays only HDL block parameters that have
non-default values for the currently selected block.

hdldispblkparams(gcb)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

HDL Block Parameters ('simplevectorsum/vsum/Sum of

Elements')

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

Implementation

Architecture : Linear

Implementation Parameters

OutputPipeline : 3

See also hdldispblkparams.

10-4



Set HDL Block Parameters for Multiple Blocks

Set HDL Block Parameters for Multiple Blocks
For models that contain a large number of blocks, using the HDL Block
Properties dialog box to select block implementations or set implementation
parameters for individual blocks may not be practical. It is more efficient to set
HDL-related model or block parameters for multiple blocks programmatically.
You can use the find_system function to locate the blocks of interest. Then,
use a loop to call hdlset_param to set the desired parameters for each block.

See the Simulink documentation for detailed information about find_system.

The following example uses the sfir_fixed model to demonstrate how to
locate a group of blocks in a subsystem and specify the same output pipeline
depth for all the blocks.

1 Open the sfir_fixed model.

2 Click on the sfir_fixed/symmetric_fir subsystem to select it.

3 Locate all Product blocks within the subsystem as follows:

prodblocks = find_system(gcb, 'BlockType', 'Product')

prodblocks =

'sfir_fixed/symmetric_fir/Product'

'sfir_fixed/symmetric_fir/Product1'

'sfir_fixed/symmetric_fir/Product2'

'sfir_fixed/symmetric_fir/Product3'

4 Set the output pipeline depth to 2 for all selected blocks.

for ii=1:length(prodblocks), hdlset_param(prodblocks{ii}, 'OutputPipeline', 2), end;

5 To verify the settings, display the value of the OutputPipeline parameter
for the blocks .

for ii=1:length(prodblocks), hdlget_param(prodblocks{ii}, 'OutputPipeline'), end;

ans =
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2

ans =

2

ans =

2

ans =

2
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View HDL Model Parameters
To display the names and values of HDL-related properties in a model, use
the hdldispmdlparams function.

The following example displays HDL-related properties and values of the
current model, in alphabetical order by property name.

hdldispmdlparams(bdroot,'all')

%%%%%%%%%%%%%%%%%%%%%%%%%

HDL CodeGen Parameters

%%%%%%%%%%%%%%%%%%%%%%%%%

AddPipelineRegisters : 'off'

Backannotation : 'on'

BlockGenerateLabel : '_gen'

CheckHDL : 'off'

ClockEnableInputPort : 'clk_enable'

.

.

.

VerilogFileExtension : '.v'

The following example displays only HDL-related properties that have
non-default values.

hdldispmdlparams(bdroot)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

HDL CodeGen Parameters (non-default)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

CodeGenerationOutput : 'GenerateHDLCodeAndDisplayGeneratedModel'

HDLSubsystem : 'simplevectorsum/vsum'

ResetAssertedLevel : 'Active-low'

Traceability : 'on'

10-7



10 Specifying Block Implementations and Parameters for HDL Code Generation

10-8



11

Guide to Supported Blocks
and Block Implementations

• “Generate a Supported Blocks Report” on page 11-2

• “Blocks Supported for HDL Code Generation” on page 11-3

• “Blocks with Multiple Implementations” on page 11-16

• “Block-Specific Usage, Requirements, and Restrictions” on page 11-29

• “Block Implementation Parameters” on page 11-50

• “Blocks That Support Complex Data” on page 11-103

• “Blocks That Support Buses” on page 11-109

• “Lookup Table Block Support” on page 11-114



11 Guide to Supported Blocks and Block Implementations

Generate a Supported Blocks Report
To generate an HTML table that summarizes blocks supported for HDL Code
generation:

1 Enter the following at the MATLAB command line:

hdllib('html');

After hdllib creates the hdlsupported library, you see the following:

### HDL Supported Block List hdlblklist.html

2 Click the hdlblklist.html link to see the generated block list.

See also “Create a Supported Blocks Library” on page 16-41.
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Blocks Supported for HDL Code Generation
You can automatically generate a library or report of supported blocks. To
learn more, see hdllib.

See “Set and View HDL Block Parameters” on page 10-2 to learn how to set
block implementations and parameters in the GUI or the command line.

The following tables summarize blocks that the coder supports for HDL code
generation.

Simulink Blocks

Block Additional Guidelines and
Restrictions

1-D Lookup Table See “1-D Lookup Table” on page
11-117.

Abs

Add

Assertion

Assignment

Bias

Bit Clear

Bit Set

Bitwise Operator

Bus Creator

Bus Selector

Check Discrete Gradient

Check Dynamic Gap

Check Dynamic Lower Bound

Check Dynamic Range

Check Dynamic Upper Bound
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Block Additional Guidelines and
Restrictions

Check Input Resolution

Check Static Gap

Check Static Lower Bound

Check Static Range

Check Static Upper Bound

Compare To Constant

Compare To Zero

Complex to Real-Imag

Constant See “Constant” on page 11-17.

Counter Free-Running

Counter Limited

Data Type Conversion See “Data Type Conversion Block
Requirements and Restrictions” on
page 11-35.

Data Type Duplicate

Data Type Propagation

Decrement Real World

Decrement Stored Integer

Delay

Demux

Direct Lookup Table (n-D) See “Lookup Table Block Support”
on page 11-114.
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Block Additional Guidelines and
Restrictions

Discrete FIR Filter See “CoeffMultipliers” on page
11-54, “Distributed Arithmetic
Implementation Parameters for
Digital Filter Blocks” on page
11-57 , “Pipelining Implementation
Parameters for Filter Blocks”
on page 11-81 , and “Speed vs.
Area Optimizations for FIR Filter
Implementations” on page 11-95.

Discrete Transfer Fcn

Discrete-Time Integrator See “Discrete-Time Integrator
Requirements and Restrictions” on
page 11-37.

Display

Divide To perform a divide operation,
connect a Product block to a Divide
block in reciprocal mode.

To select reciprocal mode, in the
Divide block dialog box, set the
Number of inputs to /.

See “Divide (reciprocal)” on page
11-18.

DocBlock

Dot Product

Enable See “Generate Code for Enabled
and Triggered Subsystems” on page
18-23.

Extract Bits

Floating Scope
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Block Additional Guidelines and
Restrictions

From Buses are not supported for HDL
code generation. See “Blocks That
Support Buses” on page 11-109.

Gain See “Gain” on page 11-19.

Goto Buses are not supported for HDL
code generation. See “Blocks That
Support Buses” on page 11-109.

Ground

Increment Real World

Increment Stored Integer

Index Vector

Inport

Logical Operator

MATLAB Function

Magnitude-Angle to Complex

Math Function Supported functions:
• reciprocal: see “Math Function
(reciprocal)” on page 11-21.

• conj: see “Math Function (conj)”
on page 11-20.

• hermitian: see “Math Function
(hermitian)” on page 11-20.

• transpose: see “Math Function
(transpose)” on page 11-22.

Matrix Concatenate

Memory

MinMax See “MinMax” on page 11-22.

Model

11-6



Blocks Supported for HDL Code Generation

Block Additional Guidelines and
Restrictions

Model Info

Multiport Switch

Mux Buses are not supported for HDL
code generation. See “Blocks That
Support Buses” on page 11-109.

Outport

Prelookup See “Lookup Table Block Support”
on page 11-114.

Product See “Product” on page 11-23.

Product of Elements

Rate Transition

Real-Imag to Complex

Reciprocal Sqrt See “Reciprocal Sqrt” on page 11-24.

Relational Operator

Relay

Reshape

Saturation

Saturation Dynamic

Scope

Selector

Shift Arithmetic

Sign

Signal Conversion

Signal Specification

Sqrt See “Sqrt” on page 11-24.
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Block Additional Guidelines and
Restrictions

Stop Simulation

Subsystem See “Subsystem” on page 11-26.

Subtract

Sum See “Sum” on page 11-26.

Sum of Elements

Switch

Tapped Delay

Terminator

To File

To Workspace

Trigger See “Generate Code for Enabled
and Triggered Subsystems” on page
18-23.

Trigonometric Function Supported functions (CORDIC
approximation method only):

• sin

• cos

• cos + jsin

• sincos

See “Trigonometric Function Block
Requirements and Restrictions” on
page 11-43.

Unary Minus

Unit Delay

Unit Delay Enabled

Unit Delay Enabled Resettable
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Block Additional Guidelines and
Restrictions

Unit Delay Resettable

Vector Concatenate

XY Graph

Zero-Order Hold

n-D Lookup Table See “Lookup Table Block Support”
on page 11-114.

Communications System Toolbox Blocks

Block Additional Restrictions and
Guidelines

BPSK Demodulator Baseband

BPSK Modulator Baseband

Convolutional Deinterleaver See “Convolutional Interleaver and
Deinterleaver Block Requirements
and Restrictions” on page 11-34.

Convolutional Encoder See “Convolutional Encoder Block
Requirements and Restrictions” on
page 11-33.

Convolutional Interleaver See “Convolutional Interleaver and
Deinterleaver Block Requirements
and Restrictions” on page 11-34.

General CRC Generator HDL
Optimized

General CRC Syndrome Detector
HDL Optimized

General Multiplexed Interleaver See “General Multiplexed
Interleaver and Deinterleaver Block
Requirements and Restrictions” on
page 11-38.
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Block Additional Restrictions and
Guidelines

General Multiplexed Deinterleaver See “General Multiplexed
Interleaver and Deinterleaver Block
Requirements and Restrictions” on
page 11-38.

Integer-Input RS Encoder HDL
Optimized

Integer-Output RS Decoder HDL
Optimized

M-PSK Demodulator Baseband

M-PSK Modulator Baseband

PN Sequence Generator See “PN Sequence Generator Block
Requirements and Restrictions” on
page 11-41.

QPSK Demodulator Baseband

QPSK Modulator Baseband

Rectangular QAM Demodulator
Baseband

See “Rectangular QAM Demodulator
Baseband Block Requirements and
Restrictions” on page 11-42.

Rectangular QAM Modulator
Baseband

See “Rectangular QAM Modulator
Baseband Block Requirements and
Restrictions” on page 11-42.

Viterbi Decoder See “Viterbi Decoder Block
Requirements and Restrictions”
on page 11-44 and “Pipelining the
Traceback Unit” on page 11-46.
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DSP System Toolbox Blocks

Block Additional Restrictions and
Guidelines

Biquad Filter See “Biquad Filter Block
Requirements and Restrictions”
on page 11-30, “Pipelining
Implementation Parameters for
Filter Blocks” on page 11-81, and
“CoeffMultipliers” on page 11-54.

CIC Decimation See “Multirate CIC Decimation and
Multirate FIR Decimation Blocks
Requirements and Restrictions”
on page 11-39, and “Pipelining
Implementation Parameters for
Filter Blocks” on page 11-81.

CIC Interpolation See “Multirate CIC Decimation and
Multirate FIR Decimation Blocks
Requirements and Restrictions”
on page 11-39, “Multirate CIC
Interpolation and Multirate FIR
Interpolation Blocks Requirements
and Restrictions” on page 11-40,
and “Pipelining Implementation
Parameters for Filter Blocks” on
page 11-81

Convert 1-D to 2-D

DSP Constant (Obsolete)

Data Type Conversion See “Data Type Conversion Block
Requirements and Restrictions” on
page 11-35.

Delay
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Block Additional Restrictions and
Guidelines

Digital Filter See “Digital Filter Block
Requirements and Restrictions” on
page 11-35 and “CoeffMultipliers” on
page 11-54, “Distributed Arithmetic
Implementation Parameters for
Digital Filter Blocks” on page
11-57, “Pipelining Implementation
Parameters for Filter Blocks”
on page 11-81, and “Speed vs.
Area Optimizations for FIR Filter
Implementations” on page 11-95.

Downsample

FIR Decimation See “Multirate CIC Decimation and
Multirate FIR Decimation Blocks
Requirements and Restrictions” on
page 11-39, “CoeffMultipliers” on
page 11-54, “Distributed Arithmetic
Implementation Parameters for
Digital Filter Blocks” on page 11-57,
“Speed vs. Area Optimizations
for FIR Filter Implementations”
on page 11-95, and “Pipelining
Implementation Parameters for
Filter Blocks” on page 11-81.

FIR Interpolation See “Multirate CIC Interpolation
and Multirate FIR Interpolation
Blocks Requirements and
Restrictions” on page 11-40,
“Pipelining Implementation
Parameters for Filter Blocks” on
page 11-81, “CoeffMultipliers” on
page 11-54, “Distributed Arithmetic
Implementation Parameters for
Digital Filter Blocks” on page 11-57,
and “Speed vs. Area Optimizations
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Block Additional Restrictions and
Guidelines

for FIR Filter Implementations” on
page 11-95.

Frame Conversion

LMS Filter See “LMS Filter Usage and
Restrictions” on page 11-38.

Matrix Viewer

Maximum See “Maximum” on page 11-22.

Minimum See “Minimum” on page 11-22.

Multiport Selector

NCO See “NCO Block Requirements and
Restrictions” on page 11-41.

Note HDL support for the NCO
block will be removed in a future
release. Use the NCO HDL
Optimized block instead.

NCO HDL Optimized

Repeat

Signal To Workspace

Sine Wave See “Sine Wave Block Requirements
and Restrictions” on page 11-43.

Spectrum Scope

Time Scope

Upsample

Variable Selector

Vector Scope

Waterfall
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HDL Verifier Blocks

Block Additional Restrictions and
Guidelines

HDL Cosimulation See “Code Generation for HDL
Cosimulation Blocks” on page 18-37.

To VCD File

Stateflow Blocks

Block Additional Restrictions and
Guidelines

Chart See “Stateflow® Chart Usage”.

Chart(MATLAB) See “Stateflow Chart Usage”.

State Transition Table See “Stateflow Chart Usage”.

Truth Table See “Stateflow Chart Usage”.

HDL Demo Library Blocks

Block Description

Bit Concat See “Bit Concat” on page 13-52.

Bit Reduce See “Bit Reduce” on page 13-55.

Bit Rotate See “Bit Rotate” on page 13-57.

Bit Shift See “Bit Shift” on page 13-59.

Bit Slice See “Bit Slice” on page 13-61.

Dual Port RAM See “Dual Port RAM Block” on page
13-5.

HDL Counter See “HDL Counter” on page 13-15.

HDL FFT See “HDL FFT” on page 13-27.

HDL FIFO See “HDL FIFO” on page 13-36.
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Block Description

HDL Streaming FFT See “HDL Streaming FFT” on page
13-40.

Simple Dual Port RAM See “Simple Dual Port RAM Block”
on page 13-7.

Single Port RAM See “Single Port RAM Block” on page
13-8.
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Blocks with Multiple Implementations

In this section...

“Block Implementations” on page 11-16

“Pass-through and No HDL Implementations” on page 11-27

“Cascade Implementation Best Practices” on page 11-27

The following tables describe implementation details and usage restrictions
for supported blocks with more than one HDL implementation.

See “Set and View HDL Block Parameters” on page 10-2 to learn how to set
block implementations and parameters in the GUI or using the command line.

Block Implementations

• “Constant” on page 11-17

• “Divide” on page 11-17

• “Divide (reciprocal)” on page 11-18

• “Gain” on page 11-19

• “Math Function (conj)” on page 11-20

• “Math Function (hermitian)” on page 11-20

• “Math Function (reciprocal)” on page 11-21

• “Math Function (transpose)” on page 11-22

• “Maximum” on page 11-22

• “Minimum” on page 11-22

• “MinMax” on page 11-22

• “Model” on page 11-23

• “Product” on page 11-23

• “Product (divide)” on page 11-24

• “Reciprocal Sqrt” on page 11-24
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• “Sqrt” on page 11-24

• “Subsystem” on page 11-26

• “Sum” on page 11-26

Constant

Implementations Parameters Description

default
Constant

None This implementation emits the value of the
Constant block.

None By default, this implementation emits
the character 'Z' for each bit in the
signal. For example, for a 4-bit signal, the
implementation would emit 'ZZZZ'.

{'Value', 'Z'} Use this parameter value if the signal is in a
high-impedance state. This implementation
emits the character 'Z' for each bit in the
signal. For example, for a 4-bit signal, the
implementation would emit 'ZZZZ'.

Logic Value

{'Value', 'X'} Use this parameter value if the signal is in
an unknown state. This implementation
emits the character 'X' for each bit in the
signal. For example, for a 4-bit signal, the
implementation would emit 'XXXX'.

Note
The Logic Value implementation does not support the double data
type. If you specify this implementation for a Constant of type double, a
code-generation error occurs.

Divide
To perform an HDL-optimized divide operation, connect a Product block to a
Divide block in reciprocal mode. For information about the Divide block in
reciprocal mode, see “Divide (reciprocal)” on page 11-18.
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In default mode, the Divide block supports only integer data types for HDL
code generation.

Implementations Parameters Description

default
Linear

None Generate a divide (/) operator
in the HDL code.

Divide (reciprocal)
The Divide block is in reciprocal mode when Number of Inputs is set to /.
In reciprocal mode, the Divide block has the HDL block implementations
described in the following table.

Implementations Parameters Description

default
Linear

None When you compute a reciprocal,
compute 1/N using the HDL divide
(/) operator to implement the
division.

RecipNewton {'Iterations', N} Use the iterative Newton method.
Select this option to optimize area.
The argument N specifies the number
of iterations.

The default value for N is 3.

The recommended value for N
is between 2 and 10. The coder
generates a message if N is outside
the recommended range.

RecipNewtonSingleRate {'Iterations', N} Use the single rate pipelined Newton
method. Select this option to
optimize speed, or if you want a
single rate implementation. The
argument N specifies the number of
iterations.

The default value for N is 3.

The recommended value for N
is between 2 and 10. The coder
generates a message if N is outside
the recommended range.
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When you use the Divide block in reciprocal mode, the following restrictions
apply:

• The input must be scalar and must have integer or fixed-point (signed or
unsigned) data type.

• The output must be scalar and have integer or fixed-point (signed or
unsigned) data type.

• Only the Zero rounding mode is supported.

• The Saturate on integer overflow option on the block must be selected.

Gain

Implementations Parameters Description

'ConstMultiplierOptimization',
'none'
(Default)

By default, the coder does not perform
CSD or FCSD optimizations. Code
generated for the Gain block retains
multiplier operations.

'ConstMultiplierOptimization',
'CSD'

When you specify this option, the
generated code decreases the area used
by the model while maintaining or
increasing clock speed, using canonic
signed digit (CSD) techniques. CSD
replaces multiplier operations with
add and subtract operations.

CSD minimizes the number of addition
operations required for constant
multiplication by representing binary
numbers with a minimum count of
nonzero digits.

'ConstMultiplierOptimization',
'FCSD'

This option uses factored CSD (FCSD)
techniques, which replace multiplier
operations with shift and add/subtract
operations on certain factors of the
operands. These factors are generally
prime but can also be a number close
to a power of 2, which favors area

default
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Implementations Parameters Description

reduction. FCSD lets you achieve a
greater area reduction than CSD, at
the cost of decreasing clock speed.

'ConstMultiplierOptimization',
'auto'

When you specify this option, the coder
chooses between the CSD or FCSD
optimizations. The coder chooses the
optimization that yields the most
area-efficient implementation, based
on the number of adders required.
When you specify 'auto', the coder
does not use multipliers, unless
conditions are such that CSD or
FCSD optimizations are not possible
(for example, if the design uses
floating-point arithmetic).

Math Function (conj)

Implementations Description

ComplexConjugate Compute complex conjugate. See Math Function in
the Simulink documentation.

Math Function (hermitian)

Implementations Description

Hermitian Compute hermitian. See Math Function in the
Simulink documentation.
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Math Function (reciprocal)

Implementations Parameters Description

Math (default)
Reciprocal

None Compute reciprocal as 1/N, using
the HDL divide (/) operator to
implement the division.

RecipNewton {'Iterations', N} Use the iterative Newton method.
Select this option to optimize
area. The argument N specifies the
number of iterations.

The default value for N is 3.

The recommended value for N
is between 2 and 10. The coder
generates a message if N is outside
the recommended range.

RecipNewtonSingleRate {'Iterations', N} Use the single rate pipelined
Newton method. Select this option
to optimize speed, or if you want
a single rate implementation. The
argument N specifies the number of
iterations.

The default value for N is 3.

The recommended value for N
is between 2 and 10. The coder
generates a message if N is outside
the recommended range.

When you use a reciprocal implementation, consider the following:

• Input must be scalar and must have integer or fixed-point (signed or
unsigned) data type.

• The output must be scalar and have integer or fixed-point (signed or
unsigned) data type.

• Only the Zero rounding mode is supported.

• The Saturate on integer overflow option on the block must be selected.
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Math Function (transpose)

Implementations Description

Transpose Compute array transpose. See Math Function in the
Simulink documentation.

Maximum

Implementations Description

default
Tree

The Tree implementation is large and slow but
has minimal latency.

Cascade This implementation is optimized for latency
* area, with medium speed. See “Cascade
Implementation Best Practices” on page 11-27.

Minimum

Implementations Description

default
Tree

The Tree implementation is large and slow but
has minimal latency.

Cascade This implementation is optimized for latency
* area, with medium speed. See “Cascade
Implementation Best Practices” on page 11-27.

MinMax

Implementations Description

default
Tree

The Tree implementation is large and slow but
has minimal latency.

Cascade This implementation is optimized for latency
* area, with medium speed. See “Cascade
Implementation Best Practices” on page 11-27.
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Model

Implementations Description

BlackBox (default) Use the BlackBox implementation to generate an
HDL interface to an external component, such
as legacy HDL code. For more information, see
“Generate Black Box Interface for Referenced
Model” on page 18-21.

ModelReference Use the ModelReference implementation when
you want to generate code from a referenced
model. For more information, see “How To
Generate Code for a Referenced Model” on page
18-18.

Product

Implementations Description

Linear (default) Generates a chain of N operations (multipliers)
for N inputs.

Tree This implementation has minimal latency but
is large and slow. It generates a tree-shaped
structure of multipliers.

Note: Product blocks that have a vector input
with two or more elements support Tree and
Cascade.

Cascade This implementation optimizes latency * area
and is faster than the tree implementation.
It computes partial products and cascades
multipliers.

Note: Product blocks that have a vector input
with two or more elements support Tree and
Cascade.

See “Cascade Implementation Best Practices” on
page 11-27.
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Product (divide)
For block implementations of the Product block in divide mode, see “Divide”
on page 11-17.

Note The Product block is in divide mode when the Number of Inputs
is set to */.

Reciprocal Sqrt

Implementations Description

SqrtFunction (default)
RecipSqrtNewton

Use the iterative Newton method. Select this option
to optimize area.

RecipSqrtNewtonSingleRate Use the single rate pipelined Newton method. Select
this option to optimize speed, or if you want a single
rate implementation.

When you generate HDL code from the Reciprocal Sqrt block, the following
restrictions apply:

• In the Block Parameters dialog box, in the Algorithm tab, for Method,
select Newton-Raphson.

• Input must be an unsigned scalar value.

• Output is a fixed-point scalar value.

Sqrt

Implementation Parameter Description

{'UseMultiplier', 'on'} Use a multiply/add algorithm
(Simulink default algorithm).

SqrtFunction (default)
SqrtBitset

{'UseMultiplier', 'off'} Use a bitset shift/addition
algorithm.
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Implementation Parameter Description

SqrtNewton {'Iterations', N} Use the iterative Newton
method. Select this option to
optimize area.

The argument N specifies the
number of iterations.

The default value for N is 3.

The recommended value for N
is between 2 and 10. The coder
generates a message if N is
outside the recommended range.

SqrtNewtonSingleRate {'Iterations', N} Use the single rate pipelined
Newton method. Select this
option to optimize speed, or
if you want a single rate
implementation.

The argument N specifies the
number of iterations.

The default value for N is 3.

The recommended value for N
is between 2 and 10. The coder
generates a message if N is
outside the recommended range.

SqrtTargetLibrary None Use the Altera or Xilinx target
library.

When you generate HDL code from the Sqrt block, the following restrictions
apply:

• Input must be an unsigned scalar value.

• Output is a fixed-point scalar value.
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Subsystem

Implementation Description

BlackBox This implementation generates a black-box interface for subsystems.
That is, the generated HDL code includes only the input/output port
definitions for the subsystem. In this way, you can use a subsystem
in your model to generate an interface to existing manually written
HDL code.

The black-box interface generated for subsystems is similar to the
interface generated for Model blocks, but without generation of clock
signals.

default

No HDL

This implementation completely removes the subsystem from the
generated code. Thus, you can use a subsystem in simulation but treat
it as a “no-op” in the HDL code.

For more information on code generation for subsystems, see “External
Component Interfaces”.

Sum

Implementations Description

default
Linear

Generates a chain of N operations
(adders ) for N inputs.

Note: The coder supports Tree and
Cascade for Sum blocks that have
a single vector input with multiple
elements.

Tree This implementation has minimal
latency but is large and slow.
Generates a tree-shaped structure of
adders.

Cascade This implementation optimizes latency
* area and is faster than the tree
implementation. It computes partial
sums and cascades adders.
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Implementations Description

See “Cascade Implementation Best
Practices” on page 11-27.

Pass-through and No HDL Implementations

Implementation Description

Pass-through
implementations

Provides a pass-through implementation in which the block’s inputs
are passed directly to its outputs. The coder supports the following
blocks with a pass-through implementation:

• Convert 1-D to 2-D

• Reshape

• Signal Conversion

• Signal Specification

No HDL This implementation completely removes the block from the generated
code. Thus, you can use the block in simulation but treat it as a “no-op”
in the HDL code. This implementation is used for many blocks (such
as Scopes and Assertions) that are significant in simulation but would
be meaningless in HDL code.

You can also use this implementation as an alternative implementation
for subsystems.

For more information related to special-purpose implementations, see
“External Component Interfaces”.

Cascade Implementation Best Practices
The coder supports cascade implementations for the Sum of Elements,
Product of Elements, and MinMax blocks. These implementations require
multiple clock cycles to process their inputs; therefore, their inputs must be
kept unchanged for their entire sample-time period. Generated test benches
accomplish this by using a register to drive the inputs.

11-27



11 Guide to Supported Blocks and Block Implementations

A recommended design practice, when integrating generated HDL code with
other HDL code, is to provide registers at the inputs. While not strictly
required, adding registers to the inputs improves timing and avoids problems
with data stability for blocks that require multiple clock cycles to process
their inputs.
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Block-Specific Usage, Requirements, and Restrictions

In this section...

“Block Usage, Requirements, and Restrictions” on page 11-29

“Restrictions on Use of Blocks in the Test Bench” on page 11-49

Block Usage, Requirements, and Restrictions
The following blocks have specific requirements and restrictions for HDL
code generation.

• “Biquad Filter Block Requirements and Restrictions” on page 11-30

• “Convolutional Encoder Block Requirements and Restrictions” on page
11-33

• “Convolutional Interleaver and Deinterleaver Block Requirements and
Restrictions” on page 11-34

• “Data Type Conversion Block Requirements and Restrictions” on page
11-35

• “Digital Filter Block Requirements and Restrictions” on page 11-35

• “Discrete FIR Filter Requirements and Restrictions” on page 11-35

• “Discrete Transfer Fcn Requirements and Restrictions” on page 11-36

• “Discrete-Time Integrator Requirements and Restrictions” on page 11-37

• “FIR Decimation Requirements and Restrictions” on page 11-37

• “FIR Interpolation Requirements and Restrictions” on page 11-37

• “General Multiplexed Interleaver and Deinterleaver Block Requirements
and Restrictions” on page 11-38

• “LMS Filter Usage and Restrictions” on page 11-38

• “Magnitude-Angle to Complex Block Requirements and Restrictions” on
page 11-39

• “Multirate CIC Decimation and Multirate FIR Decimation Blocks
Requirements and Restrictions” on page 11-39

11-29



11 Guide to Supported Blocks and Block Implementations

• “Multirate CIC Interpolation and Multirate FIR Interpolation Blocks
Requirements and Restrictions” on page 11-40

• “NCO Block Requirements and Restrictions” on page 11-41

• “PN Sequence Generator Block Requirements and Restrictions” on page
11-41

• “Reciprocal Sqrt Block Requirements and Restrictions” on page 11-42

• “Rectangular QAM Demodulator Baseband Block Requirements and
Restrictions” on page 11-42

• “Rectangular QAM Modulator Baseband Block Requirements and
Restrictions” on page 11-42

• “Sine Wave Block Requirements and Restrictions” on page 11-43

• “Trigonometric Function Block Requirements and Restrictions” on page
11-43

• “Viterbi Decoder Block Requirements and Restrictions” on page 11-44

Biquad Filter Block Requirements and Restrictions

• “General Guidelines” on page 11-30

• “Programmable Filter Support” on page 11-30

• “Serial Architecture Support” on page 11-31

General Guidelines.

• Data vector and frame inputs are not supported for HDL code generation.

• Initial conditions must be set to zero. HDL code generation is not
supported for nonzero initial states.

• Optimize unity scale values must be selected.

Programmable Filter Support. The coder supports programmable filters
for Biquad Filters. Fully parallel and applicable serial architectures are
supported.

1 Select Input port(s) as coefficient source on the filter block mask.
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2 Connect the coefficient port with a vector signal.

3 Specify the implementation architecture and parameters from the HDL
Coder property interface.

4 Generate HDL code.

Programmable filters are not supported for:

• CoeffMultipliers as csd or factored-csd

Serial Architecture Support. Biquad Filter block supports fully parallel,
fully serial, and partly serial architectures.

• Fully Parallel (default): AddPipelineRegisters, CoeffMultipliers,
ConstrainedOutputPipeline, InputPipeline, OutputPipeline

• Fully Serial: ConstrainedOutputPipeline, InputPipeline, OutputPipeline
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• Partly Serial: ArchitectureSpecifiedBy, NumMultipliers, FoldingFactor,
ConstrainedOutputPipeline, InputPipeline, OutputPipeline
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Convolutional Encoder Block Requirements and Restrictions
Input data requirements:

• Must be sample-based,

• Must have boolean or ufix1 data type.

The coder supports only the following coding rates:

• ½ to 1/7

• 2/3

The coder supports only constraint lengths for 3 to 9.

Trellis structure must be specified by the poly2trellis function.

The coder supports the following Operation mode settings:

11-33



11 Guide to Supported Blocks and Block Implementations

• Continuous

• Reset on nonzero input via port

If you select this mode, you must select the Delay reset action to next
time step option. When you select this option, the Convolutional Encoder
block finishes its current computation before executing a reset.

Convolutional Interleaver and Deinterleaver Block
Requirements and Restrictions

Shift Register Based Implementations. The default implementations
for the Convolutional Interleaver and Deinterleaver blocks are shift
register based. If you want to suppress generation of reset logic, set the
implementation parameter ResetType to'none'.

Note that when you set ResetType to'none', reset is not applied to the shift
registers. Mismatches between Simulink and the generated code occur for
some number of samples during the initial phase, when registers are not
fully loaded. To avoid spurious test bench errors, determine the number
of samples required to fully load the shift registers. Then, set the Ignore
output data checking (number of samples) option accordingly. (You
can use the IgnoreDataChecking property for this purpose, if you are using
the command-line interface.)

RAM Based Implementations. When you select the RAM implementation
for a Convolutional Interleaver or Deinterleaver block, the coder uses RAM
resources instead of shift registers. The implementation has the following
limitations:

When you select the RAM implementation for a Convolutional Interleaver or
Deinterleaver block, the coder uses RAM resources instead of shift registers.

• Double or single data types are not supported for either input or output
signals.

• Initial conditions for the block must be set to zero.

• At least two rows of interleaving are required .
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Data Type Conversion Block Requirements and Restrictions
If you configure a Data Type Conversion block for double to fixed-point or
fixed-point to double conversion, a warning displays during code generation.

Digital Filter Block Requirements and Restrictions

• If you select the Digital Filter block Discrete-time filter object option,
you must have the DSP System Toolbox software to generate code for the
block.

• Initial conditions must be set to zero. HDL code generation is not
supported for nonzero initial states.

• The coder does not support the Digital Filter block Input port(s) option
for HDL code generation.

• The Digital Filter block supports complex data for all filter structures
except decimators and interpolators. See “Complex Coefficients and Data
Support for the Digital Filter and Biquad Filter Blocks” on page 11-107.

Discrete FIR Filter Requirements and Restrictions

• “General Guidelines” on page 11-35

• “Multichannel Filter Support” on page 11-36

• “Programmable Filter Support” on page 11-36

General Guidelines.

• The coder does not support unsigned inputs for the Discrete FIR Filter
block.

• Initial conditions must be set to zero. HDL code generation is not
supported for nonzero initial states.

• The coder does not support the following options of the Discrete FIR Filter
block:

- Filter Structure : Lattice MA
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Multichannel Filter Support. The coder supports the use of vector inputs
for Discrete FIR Filters.

1 Connect vector signals to Discrete FIR block input port.

2 Specify Input processing as Elements as channels (sample based).

3 Specify architecture and implementation parameters.

4 Specify channel sharing option as on for fully parallel support.

5 Generate HDL code.

Programmable Filter Support. The coder supports programmable filters
for Discrete FIR Filters. Fully parallel and applicable serial architectures
are supported.

1 Select Input port(s) as coefficient source on the filter block mask.

2 Connect the coefficient port with a vector signal.

3 Specify the implementation architecture and parameters from the HDL
Coder property interface.

4 Generate HDL code.

Programmable filters are not supported for:

• Implementations for which you specify the coefficients by dialog parameters
(for example, complex input and coefficients with serial architecture)

• Distributed Arithmetic (DA)

• CoeffMultipliers as csd or factored-csd

For an example, see Generate HDL Code for FIR Programmable Filter.

Discrete Transfer Fcn Requirements and Restrictions
The following limitations apply to HDL code generation from the Discrete
Transfer Fcn block:
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• You must use the Inherit: Inherit via internal rule option for data type
propagation if, and only if, the input data type is double.

• Frame, matrix, and vector input data types are not supported.

• The leading denominator coefficient (a0) must be 1 or -1.

The Discrete Transfer Fcn block cannot participate in the following
optimizations:

• Resource sharing

• Distributed pipelining

Discrete-Time Integrator Requirements and Restrictions

• Use of state ports is not supported for HDL code generation. Clear the
Show state port option.

• Use of external initial conditions is not supported for HDL code generation.
Set Initial condition source to Internal.

• Width of input and output signals must not exceed 32 bits.

FIR Decimation Requirements and Restrictions
Initial conditions must be set to zero. HDL code generation is not supported
for nonzero initial states.

See also “Multirate CIC Decimation and Multirate FIR Decimation Blocks
Requirements and Restrictions” on page 11-39.

FIR Interpolation Requirements and Restrictions
Initial conditions must be set to zero. HDL code generation is not supported
for nonzero initial states.

See also “Multirate CIC Interpolation and Multirate FIR Interpolation Blocks
Requirements and Restrictions” on page 11-40.
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General Multiplexed Interleaver and Deinterleaver Block
Requirements and Restrictions

Shift Register Based Implementations. The default implementations
for the General Multiplexed Interleaver and Deinterleaver blocks are shift
register based. If you want to suppress generation of reset logic, set the
implementation parameter ResetType to'none'.

Note that when you set ResetType to'none', reset is not applied to the shift
registers. Mismatches between Simulink and the generated code occur for
some number of samples during the initial phase, when registers are not
fully loaded. To avoid spurious test bench errors, determine the number
of samples required to fully load the shift registers. Then, set the Ignore
output data checking (number of samples) option accordingly. (You
can use the IgnoreDataChecking property for this purpose, if you are using
the command-line interface)

LMS Filter Usage and Restrictions
By default, the LMS Filter implementation uses a linear sum for the FIR
section of the filter.

The LMS Filter implements a tree summation (which has a shorter critical
path) under the following conditions:

• The LMS Filter is used with real data

• The word length of the Accumulator W’u data type is at least
ceil(log2(filter length)) bits wider than the word length of the
Product W’u data type

• The Accumulator W’u data type has the same fraction length as the
Product W’u data type

The LMS Filter block has the following restrictions for HDL code generation:

• The coder does not support the Normalized LMS algorithm of the LMS
Filter.

• The Reset port supports only Boolean and unsigned inputs.

• The Adapt port supports only Boolean inputs.
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• Filter length must be greater than or equal to 2.

Magnitude-Angle to Complex Block Requirements and
Restrictions
The Magnitude-Angle to Complex block supports HDL code generation when
you set Approximation method to CORDIC.

Multirate CIC Decimation and Multirate FIR Decimation Blocks
Requirements and Restrictions
The following requirements apply to both the Multirate CIC Decimation and
Multirate FIR Decimation blocks:

• The coder supports both Coefficient source options (Dialog parameters
or Multirate filter object (MFILT)).

• When you select Multirate filter object (MFILT):

- You can enter either a filter object name or a direct filter specification in
the Multirate filter variable field.

• Vector and frame inputs are not supported for HDL code generation.

For the Multirate FIR Decimation block:

• When you select Multirate filter object (MFILT), the filter object
specified in the Multirate filter variable field must be either a
mfilt.firdecim object or a mfilt.firtdecim object. If you specify some
other type of filter object, an error will occur.

• When you select Dialog parameters, the following fixed-point options are
not supported for HDL code generation:

- Slope and Bias scaling

- Inherit via internal rule

For the Multirate CIC Decimation block:

• When you select Multirate filter object (MFILT),, the filter object
specified in theMultirate filter variable field must be a mfilt.cicdecim
object. If you specify some other type of filter object, an error will occur.
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• When you select Dialog parameters, the Filter Structure option
Zero-latency decimator is not supported for HDL code generation. Select
Decimator in the Filter Structure pulldown menu.

Multirate CIC Interpolation and Multirate FIR Interpolation
Blocks Requirements and Restrictions
The following requirements apply to both the Multirate CIC Interpolation and
Multirate FIR Interpolation blocks:

• The coder supports both Coefficient source options (Dialog parameters
or Multirate filter object (MFILT)).

• When you select Multirate filter object (MFILT):

- You can enter either a filter object name or a direct filter specification in
the Multirate filter variable field.

• Vector and frame inputs are not supported for HDL code generation.

For the Multirate FIR Interpolation block:

• When you select Multirate filter object (MFILT), the filter object
specified in theMultirate filter variable field must be a mfilt.firinterp
object. If you specify some other type of filter object, an error will occur.

• When you select Dialog parameters, the following fixed-point options are
not supported for HDL code generation:

- Coefficients: Slope and Bias scaling

- Product Output: Inherit via internal rule

For the Multirate CIC Interpolation block:

• When you select Multirate filter object (MFILT), the filter object
specified in theMultirate filter variable field must be a mfilt.cicinterp
object. If you specify some other type of filter object, an error will occur.

• When you select Dialog parameters, the Filter Structure option
Zero-latency interpolator is not supported for HDL code generation.
Select Interpolator in the Filter Structure dropdown menu.
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NCO Block Requirements and Restrictions

Note HDL support for the NCO block will be removed in a future release.
Use the NCO HDL Optimized block instead.

Inputs:

• The phase increment and phase offset support only integer or fixed-point
data types.

• The phase increment and phase offset can be either scalar or vector values.

Outputs:

• The coder supports only fixed point data types for the quantization error
(Qerr) port and output signals.

Parameters:

• The coder does not support Add internal dither for vector inputs

• If Quantize phase is selected, Number of quantized accumulator bits
should be greater than or equal to 4. A checkhdl error occurs when there
are fewer than 4 quantized accumulator bits.

• If Quantize phase is deselected, the accumulator Word length should
be greater than or equal to 4. A checkhdl error occurs when there are
fewer than 4 accumulator bits.

PN Sequence Generator Block Requirements and Restrictions
Inputs:

• You can select Input port as the Output mask source on the block.
However, in this case the Mask input signal must be a vector of data type
ufix1.

• If Reset on nonzero input is selected, the input to the Rst port must
have data type Boolean.

Outputs:
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• Outputs of type double are not supported for HDL code generation. All
other output types (including bit packed outputs) are supported.

Reciprocal Sqrt Block Requirements and Restrictions
When using this block for HDL code generation, set theMethod parameter to
Newton-Raphson.

Rectangular QAM Demodulator Baseband Block Requirements
and Restrictions
The coder has the following requirements and restrictions for the Rectangular
QAM Demodulator Baseband block:

• The block does not support single or double data types for HDL code
generation.

• The coder supports the following Output type options:

- Integer

- Bit is supported only if the Decision Type selected is Hard decision.

• The coder requires that Normalization Method be set to Minimum
Distance Between Symbols, with a Minimum distance of 2.

• The coder requires that Phase offset (rad) be set to a value that is
multiple a of pi/4.

Rectangular QAM Modulator Baseband Block Requirements
and Restrictions
The coder has the following requirements and restrictions for the Rectangular
QAM Modulator Baseband block:

• The block does not support single or double data types for HDL code
generation.

• When Input Type is set to Bit, the block does not support HDL code
generation for input types other than boolean or ufix1.
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The Rectangular QAM Modulator Baseband block does not support HDL code
generation when the input type is set to Bit but the block input is actually
multibit (uint16, for example).

Sine Wave Block Requirements and Restrictions
For HDL code generation, you must select the following Sine Wave block
settings:

• Computation method: Table lookup

• Sample mode: Discrete

Output:

• The output port cannot have data types single or double.

Trigonometric Function Block Requirements and Restrictions
The Trigonometric Function block supports HDL code generation for the
following functions:

Trigonometric
Function Block
Implementation

Supported
Functions

Supported
Approximation
Methods

sin CORDIC

cos CORDIC

cos + jsin CORDIC

default
Trigonometric

sincos CORDIC

For the sin and cos functions, unsigned data types are supported for CORDIC
approximations.

The coder gives an error when:

• You select an unsupported function on the Trigonometric Function block.

• You select an Approximation method other than CORDIC.
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Use the default implementation for the Trigonometric Function block, as
shown in the following figure.

See also Trigonometric Function, cordicsin,cordiccos, and cordicsincos.

Viterbi Decoder Block Requirements and Restrictions

• “General Guidelines” on page 11-44

• “Limitations” on page 11-45

• “Input and Output Data Types” on page 11-45

• “Pipelining the Traceback Unit” on page 11-46

• “RAM-Based Traceback” on page 11-46

• “Viterbi Decoder Example” on page 11-49

General Guidelines. The coder currently supports the following features
of the Viterbi Decoder block:
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• Non-recursive encoder/decoder with feed-forward trellis and simple shift
register generation configuration

• Sample based input

• Decoder rates from 1/2 to 1/7

• Constraint length from 3 to 9

Limitations. When you generate code for the Viterbi Decoder block, observe
the following limitations:

• Punctured code: Do not select this option. Punctured code requires
frame-based input, which the coder does not support.

• Decision type: the coder does not support the Unquantized decision type.

• Error if quantized input values are out of range: The coder does not
support this option.

• Operation mode: The coder supports only the Continuous mode.

• Enable reset input port: HDL support is provided when you enable both
Enable reset input port and Delay reset action to next time step.
You must select Continuous operation mode.

Input and Output Data Types.

• When Decision type is set to Soft decision, the HDL implementation
of the Viterbi Decoder block supports fixed-point inputs and output. For
input, the fixed-point data type must be ufixN, where N is the number of
soft decision bits. Signed built-in data types (int8, int16, int32) are not
supported. For output, the HDL implementation of the Viterbi Decoder
block supports block-supported output data types.

• When Decision type is set to Hard decision, the block supports input
with data types ufix1 and Boolean. For output, the HDL implementation
of the Viterbi Decoder block supports block-supported output data types.

• The HDL implementation of the Viterbi Decoder block does not support
double and single input data types are not supported. The block does not
support floating point output for fixed-point inputs.
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Pipelining the Traceback Unit. The Viterbi Decoder block decodes every bit
by tracing back through a traceback depth that you define for the block. The
block implements a complete traceback for each decision bit, using registers
to store the minimum state index and branch decision in the traceback
decoding unit. You can specify that the traceback decoding unit be pipelined
in order to improve the speed of the generated circuit. You can add pipeline
registers to the traceback unit by specifying the number of traceback stages
per pipeline register. To do this, use the TracebackStagesPerPipeline
implementation parameter.

The TracebackStagesPerPipeline implementation parameter lets you
balance the circuit performance based on system requirements. A smaller
parameter value indicates the requirement to add more registers to increase
the speed of the traceback circuit. Increasing the number results in a lower
number of registers along with a decrease in the circuit speed.

See the “HDL Code Generation for Viterbi Decoder” example model for an
example using TracebackStagesPerPipeline.

RAM-Based Traceback. Instead of using registers, you can choose to use
RAMs to save the survivor branch information.

1 Set the HDL Architecture property of the Viterbi Decoder block to
RAM-based Traceback.
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2 Set the traceback depth on the Viterbi Decoder block mask.
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RAM-based traceback and register-based traceback differ in the following
ways:

• The RAM-based implementation traces back through one set of data to
find the initial state to decode the previous set of data. The register-based
implementation combines the traceback and decode operations into one
step and uses the best state found from the minimum operation as the
decoding initial state.

• RAM-based implementation traces back through M samples, decodes the
previous M bits in reverse order, and releases one bit in order at each clock
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cycle, whereas the register-based implementation decodes one bit after a
complete traceback.

Because of the differences in the two traceback algorithms, the RAM-based
implementation produces different numerical results than the register-based
traceback. A longer traceback depth, for example, 10 times the constraint
length, is recommended in the RAM-based traceback to achieve a similar bit
error rate (BER) as the register-based implementation. The size of RAM
required for the implementation depends on the trellis and the traceback
depth.

See HDL Code Generation for Viterbi Decoder.

Viterbi Decoder Example. The “HDL Code Generation for Viterbi Decoder”
example demonstrates HDL code generation for a fixed-point Viterbi Decoder
block, with pipelined traceback decoding. To open the example, type the
following command:

showdemo commviterbihdl_m

Restrictions on Use of Blocks in the Test Bench
Blocks that belong to the blocksets and toolboxes in the following list should
not be directly connected to the DUT. Instead, place them in a subsystem, and
connect the subsystem to the DUT. This restriction applies to all blocks in
the following products:

• SimRF™

• SimDriveline™

• SimEvents®

• SimMechanics™

• SimPowerSystems™

• Simscape™
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Block Implementation Parameters

In this section...

“Overview” on page 11-50

“BalanceDelays” on page 11-51

“ConstMultiplierOptimization” on page 11-52

“CoeffMultipliers” on page 11-54

“ConstrainedOutputPipeline” on page 11-56

“Distributed Arithmetic Implementation Parameters for Digital Filter
Blocks” on page 11-57

“DistributedPipelining” on page 11-70

“FlattenHierarchy” on page 11-71

“InputPipeline” on page 11-73

“InstantiateFunctions” on page 11-74

“LoopOptimization” on page 11-75

“MapPersistentVarsToRAM” on page 11-77

“OutputPipeline” on page 11-80

“Pipelining Implementation Parameters for Filter Blocks” on page 11-81

“RAM” on page 11-85

“ResetType” on page 11-86

“ShiftRegister” on page 11-88

“UseRAM” on page 11-90

“Speed vs. Area Optimizations for FIR Filter Implementations” on page
11-95

“Interface Generation Parameters” on page 11-102

Overview
Block implementation parameters enable you to control details of the code
generated for specific block implementations. See “Set and View HDL Block

11-50



Block Implementation Parameters

Parameters” on page 10-2 to learn how to select block implementations and
parameters in the GUI or the command line.

Property names are strings. The data type of a property value is specific to
the property. This section describes the syntax of each block implementation
parameter and how the parameter affects generated code.

BalanceDelays
The BalanceDelays subsystem parameter enables you to set delay balancing
on a subsystem within a model.

The BalanceDelays options for a subsystem are listed in the following table.

BalanceDelays Setting Description

'inherit' (default) Use the delay balancing setting
of the parent subsystem. If this
subsystem is the highest-level
subsystem, use the delay balancing
setting for the model.

'on' Balance delays for this subsystem.

'off' Do not balance delays for this
subsystem, even if the parent
subsystem has delay balancing
enabled.

Prerequisites for Subsystem Delay Balancing
To disable delay balancing for any subsystem within a model, you must set
the model-level delay balancing parameter, BalanceDelays, to 'off'.

To learn how to set model-level delay balancing, see BalanceDelays.

Set Delay Balancing For a Subsystem
To set delay balancing for a subsystem using the HDL Block Properties dialog
box:

1 Right-click the subsystem.

2 Select HDL Code > HDL Block Properties .
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3 For BalanceDelays, select inherit, on, or off.

To set delay balancing for a subsystem from the command line, use
hdlset_param. For example, to turn off delay balancing for a subsystem,
my_dut:

hdlset_param('my_dut', 'BalanceDelays', 'off')

See also hdlset_param.

ConstMultiplierOptimization
The ConstMultiplierOptimization implementation parameter lets you
specify use of canonic signed digit (CSD) or factored CSD optimizations for
processing coefficient multiplier operations in code generated for the following
blocks:

• Gain

• Stateflow chart

• Truth Table

• MATLAB Function

The following table shows the ConstMultiplierOptimization parameter
values.

Implementations Parameters Description

'ConstMultiplierOptimization',
'none'
(Default)

By default, the coder does not perform
CSD or FCSD optimizations. Code
generated for the Gain block retains
multiplier operations.

'ConstMultiplierOptimization',
'CSD'

When you specify this option,
the generated code decreases the
area used by the model while
maintaining or increasing clock
speed, using canonic signed digit
(CSD) techniques. CSD replaces
multiplier operations with add and
subtract operations. CSD minimizes

default
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Implementations Parameters Description

'ConstMultiplierOptimization',
'FCSD'

This option uses factored CSD (FCSD)
techniques, which replace multiplier
operations with shift and add/subtract
operations on certain factors of the
operands. These factors are generally
prime but can also be a number close
to a power of 2, which favors area
reduction. This option lets you achieve
a greater area reduction than CSD, at
the cost of decreasing clock speed.

'ConstMultiplierOptimization',
'auto'

When you specify this option, the coder
chooses between the CSD or FCSD
optimizations. The coder chooses the
optimization that yields the most
area-efficient implementation, based
on the number of adders required.
When you specify 'auto', the coder
does not use multipliers, unless
conditions are such that CSD or
FCSD optimizations are not possible
(for example, if the design uses
floating-point arithmetic).

The following figure shows the ConstMultiplierOptimization option in
the HDL Block properties dialog box.
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CoeffMultipliers
The CoeffMultipliers implementation parameter lets you specify use of
canonic signed digit (CSD) or factored CSD optimizations for processing
coefficient multiplier operations in code generated for certain filter blocks.
Specify the CoeffMultipliers parameter using one of the following options:

• 'csd': Use CSD techniques to replace multiplier operations with shift
and add operations. CSD techniques minimize the number of addition
operations required for constant multiplication by representing binary
numbers with a minimum count of nonzero digits. This representation
decreases the area used by the filter while maintaining or increasing clock
speed.

• 'factored-csd': Use factored CSD techniques, which replace multiplier
operations with shift and add operations on prime factors of the coefficients.
This option lets you achieve a greater filter area reduction than CSD, at
the cost of decreasing clock speed.

• 'multipliers' (default): Retain multiplier operations.
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In the following figure, the HDL Block Properties dialog box specifies that code
generated for a FIR Decimation block in the model uses the CSD optimization.

The coder supports CoeffMultipliers for the filter block implementations
shown in the following table.

Block Implementation

dsparch4/Biquad Filter default

dsparch4/Digital Filter default
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Block Implementation

dspmlti4/FIR Decimation default

dspmlti4/FIR Interpolation default

simulink/Discrete/Discrete FIR Filter default

ConstrainedOutputPipeline
The ConstrainedOutputPipeline parameter enables you to specify a
nonnegative number of registers at the outputs of a block.

Use constrained output pipelining when you want to place registers at specific
locations in your design. Distributed pipelining does not redistribute registers
you specify with constrained output pipelining.

The coder redistributes existing delays within your design to try to meet
your constraint. When there are fewer registers than the coder needs to
satisfy your constraint, the coder reports the difference between the number
of desired and actual output registers. You can add registers to your design
using input or output pipelining.

How to Specify Constrained Output Pipelining
To specify constrained output pipelining for a block using the GUI:

1 Right-click the block and select HDL Code > HDL Block Properties.

2 For ConstrainedOutputPipeline, enter the number of registers you
want at the output ports.

To specify constrained output pipelining, on the command line, enter:

hdlset_param(path_to_block,'ConstrainedOutputPipeline', number_of_output_re

For example, to constrain 6 registers at the output ports of a subsystem,
subsys, in your model, mymodel, enter:

hdlset_param('mymodel/subsys','ConstrainedOutputPipeline', 6)
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See Also

• “Constrained Output Pipelining” on page 15-63

Distributed Arithmetic Implementation Parameters
for Digital Filter Blocks
Distributed Arithmetic (DA) is a widely used technique for implementing
sum-of-products computations without the use of multipliers. Designers
frequently use DA to build efficient Multiply-Accumulate Circuitry (MAC) for
filters and other DSP applications.

The main advantage of DA is its high computational efficiency. DA distributes
multiply and accumulate operations across shifters, lookup tables (LUTs) and
adders in such a way that conventional multipliers are not required.

The coder supports distributed arithmetic (DA) implementations for the
blocks described in the following table.

Block Implementation FIR Structures That Support DA

dsparch4/Digital Filter default • dfilt.dffir

• dfilt.dfsymfir

• dfilt.dfasymdir

simulink/Discrete/Discrete FIR Filter default • dfilt.dffir

• dfilt.dfsymfir

• dfilt.dfasymdir
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Block Implementation FIR Structures That Support DA

dspmlti4/FIR Decimation default mfilt.firdecim

dspmlti4/FIR Interpolation Fully Parallel
(default)
Partly Serial
Fully Serial
Distributed
Arithmetic (DA)

mfilt.firinterp

This section briefly summarizes the operation of DA. For references on the
theoretical foundations of DA, see “Further References” on page 11-69.

In a DA realization of a FIR filter structure, a sequence of input data words of
width W is fed through a parallel to serial shift register, producing a serialized
stream of bits. The serialized data is then fed to a bit-wide shift register. This
shift register serves as a delay line, storing the bit serial data samples.

The delay line is tapped (based on the input word size W), to form a W-bit
address that indexes into a lookup table (LUT). The LUT stores all possible
sums of partial products over the filter coefficients space. The LUT is followed
by a shift and adder (scaling accumulator) that adds the values obtained
from the LUT sequentially.

A table lookup is performed sequentially for each bit (in order of significance
starting from the LSB). On each clock cycle, the LUT result is added to the
accumulated and shifted result from the previous cycle. For the last bit (MSB),
the table lookup result is subtracted, accounting for the sign of the operand.

This basic form of DA is fully serial, operating on one bit at a time. If the
input data sequence is W bits wide, then a FIR structure takes W clock cycles
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to compute the output. Symmetric and asymmetric FIR structures are an
exception, requiring W+1 cycles, because one additional clock cycle is needed to
process the carry bit of the preadders.

Improving Performance with Parallelism
The inherently bit-serial nature of DA can limit throughput. To improve
throughput, the basic DA algorithm can be modified to compute more than
one bit sum at a time. The number of simultaneously computed bit sums is
expressed as a power of two called the DA radix. For example, a DA radix of 2
(2^1) indicates that one bit sum is computed at a time; a DA radix of 4 (2^2)
indicates that two bit sums are computed at a time, and so on.

To compute more than one bit sum at a time, the LUT is replicated. For
example, to perform DA on 2 bits at a time (radix 4), the odd bits are fed to
one LUT and the even bits are simultaneously fed to an identical LUT. The
LUT results corresponding to odd bits are left-shifted before they are added
to the LUT results corresponding to even bits. This result is then fed into a
scaling accumulator that shifts its feedback value by 2 places.

Processing more than one bit at a time introduces a degree of parallelism into
the operation, improving speed at the expense of area. You can control the
degree of parallelism by specifying the DARadix implementation parameter.
DARadix lets you specify the number of bits processed simultaneously in DA
(see “DARadix Implementation Parameter” on page 11-67).

Reducing LUT Size
The size of the LUT grows exponentially with the order of the filter. For a
filter with N coefficients, the LUT must have 2^N values. For higher order
filters, LUT size must be reduced to reasonable levels. To reduce the size, you
can subdivide the LUT into a number of LUTs, called LUT partitions. Each
LUT partition operates on a different set of taps. The results obtained from
the partitions are summed.

For example, for a 160-tap filter, the LUT size is (2^160)*W bits, where W is
the word size of the LUT data. Dividing this into 16 LUT partitions, each
taking 10 inputs (taps), the total LUT size is reduced to 16*(2^10)*W bits.
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Although LUT partitioning reduces LUT size, more adders are required to
sum the LUT data.

You control how the LUT is partitioned in DA by specifying the
DALUTPartition implementation parameter (see “DALUTPartition
Implementation Parameter” on page 11-60).

Requirements and Considerations for Generating Distributed
Arithmetic Code
You can control how DA code is generated by using the DALUTPartition and
DARadix implementation parameters. Before using these parameters, review
the following general requirements, restrictions, and other considerations for
generation of DA code.

Requirements Specific to Filter Type. The DALUTPartition and DARadix
parameters have certain requirements and restrictions that are specific to
different filter types. These requirements are included in the discussions of
each parameter:

• “DALUTPartition Implementation Parameter” on page 11-60

• “DARadix Implementation Parameter” on page 11-67

Fixed-Point Quantization Required. Generation of DA code is supported
only for fixed-point filter designs.

Specifying Filter Precision. The data path in HDL code generated for the
DA architecture is carefully optimized for full precision computations. The
filter result is cast to the output data size only at the final stage when it
is presented to the output.

Distributed arithmetic merges the product and accumulator operations and
does computations at full precision. This approach ignores the Product
output and Accumulator properties of the Digital Filter block and sets
these properties to full precision.

DALUTPartition Implementation Parameter
DALUTPartition enables DA code generation and specifies the number and
size of LUT partitions used for DA.
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Specify LUT partitions as a vector of integers [p1 p2...pN] where:

• N is the number of partitions.

• Each vector element specifies the size of a partition. The maximum size for
an individual partition is 12.

• The sum of all vector elements equals the filter length FL. FL is calculated
differently depending on the filter type (see “Specifying DALUTPartition
for Single-Rate Filters” on page 11-61).

Specifying DALUTPartition for Single-Rate Filters. To determine the
LUT partition for one of the supported single-rate filter types, calculate FL as
shown in the following table. Then, specify the partition as a vector whose
elements sum to FL.

Filter Type Filter Length (FL) Calculation

dfilt.dffir FL = length(find(Hd.numerator~= 0))

dfilt.dfsymfir
dfilt.dfasymfir

FL = ceil(length(find(Hd.numerator~= 0))/2)

The following figure shows a Digital Filter configured for a direct form FIR
filter of length 11.
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The following figure shows how to set one possible LUT partitioning for this
filter:

You can also specify generation of DA code for your filter design without LUT
partitioning. To do so, specify a vector of one element, whose value is equal
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to the filter length. For example, the following figure shows a Digital Filter
configuration for a direct form FIR filter of length 5.
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Specifying DALUTPartition for Multirate Filters. For supported multirate
filters (mfilt.firdecim and mfilt.firinterp) , you can specify the LUT
partition as

• A vector defining a partition for LUTs for all polyphase subfilters.

11-66



Block Implementation Parameters

• A matrix of LUT partitions, where each row vector specifies a LUT partition
for a corresponding polyphase subfilter. In this case, the FL is uniform for
all subfilters. This approach provides a fine control for partitioning each
subfilter.

The following table shows the FL calculations for each type of LUT partition.

LUT Partition Specified As... Filter Length (FL) Calculation

Vector: determine FL as shown in the Filter Length
(FL) Calculation column to the right. Specify the LUT
partition as a vector of integers whose elements sum to
FL.

FL = size(polyphase(Hm), 2)

Matrix: determine the subfilter length FLi based on the
polyphase decomposition of the filter, as shown in the
Filter Length (FL) Calculation column to the right.
Specify the LUT partition for each subfilter as a row
vector whose elements sum to FLi.

p = polyphase(Hm);
FLi = length(find(p(i,:)));

where i is the index to the ith row of
the polyphase matrix of the multirate
filter. The ith row of the matrix p
represents the ith subfilter.

DARadix Implementation Parameter
DARadix specifies the number of bits processed simultaneously in DA. The
number of bits is expressed as N, which must be:

• A nonzero positive integer that is a power of two

• Such that mod(W, log2(N)) = 0, where W is the input word size of the filter

The default value for N is 2, specifying processing of one bit at a time, or fully
serial DA, which is slow but low in area. The maximum value for N is 2^W,
where W is the input word size of the filter. This maximum specifies fully
parallel DA, which is fast but high in area. Values of N between these extrema
specify partly serial DA.

You can set the DARadix implementation parameter in the HDL Properties
dialog for a filter block as shown in the following figure.
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Note When setting a DARadix value for symmetrical (dfilt.dfsymfir) and
asymmetrical (dfilt.dfasymfir) filters, see “Considerations for Symmetrical
and Asymmetrical Filters” on page 11-69.
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Special Cases

Coefficients with Zero Values. DA ignores taps that have zero-valued
coefficients and reduces the size of the DA LUT accordingly.

Considerations for Symmetrical and Asymmetrical Filters. For
symmetrical (dfilt.dfsymfir) and asymmetrical (dfilt.dfasymfir) filters:

• A bit-level preadder or presubtractor is required to add tap data values
that have coefficients of equal value and/or opposite sign. One extra clock
cycle is required to compute the result because of the additional carry bit.

• The coder takes advantage of filter symmetry where possible. This reduces
the DA LUT size substantially, because the effective filter length for these
filter types is halved.

Holding Input Data in a Valid State. In filters with a DA architecture,
data can be delivered to the outputs N cycles (N >= 2) later than the inputs.
You can use the HoldInputDataBetweenSamples model property to determine
how long (in terms of clock cycles) input data values are held in a valid state,
as follows:

• When HoldInputDataBetweenSamples is set 'on' (the default), input data
values are held in a valid state across N clock cycles.

• When HoldInputDataBetweenSamples is set 'off' , data values are held in
a valid state for only one clock cycle. For the next N-1 cycles, data is in an
unknown state (expressed as 'X') until the next input sample is clocked in.

Further References. Detailed discussions of the theoretical foundations of
DA appear in the following publications:

• Meyer-Baese, U., Digital Signal Processing with Field Programmable Gate
Arrays, Second Edition, Springer, pp 88–94, 128–143

• White, S.A., Applications of Distributed Arithmetic to Digital Signal
Processing: A Tutorial Review. IEEE ASSP Magazine, Vol. 6, No. 3
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DistributedPipelining
The DistributedPipelining parameter enables pipeline register
distribution, a speed optimization that enables you to increase your clock
speed by reducing your critical path.

The following table shows the effect of the DistributedPipelining and
OutputPipeline parameters.

DistributedPipelining OutputPipeline,
nStages

Result

Unspecified (nStages
defaults to 0)

The coder does
not insert pipeline
registers.

'off' (default)

nStages > 0 The coder inserts
nStages output
registers at the output
of the subsystem,
MATLAB Function
block, or Stateflow
chart.

Unspecified (nStages
defaults to 0)

The coder does
not insert pipeline
registers.
DistributedPipelining
has no effect.

'on'

nStages > 0 The coder distributes
nStages registers
inside the subsystem,
MATLAB Function
block, or Stateflow
chart, based on critical
path analysis.

To achieve further optimization of code generated with distributed pipelining,
perform retiming during RTL synthesis, if possible.
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Tip Output data might be in an invalid state initially if you insert pipeline
registers. To avoid test bench errors resulting from initial invalid samples,
disable output checking for those samples. For more information, see:

• “Use file I/O to read/write test bench data” on page 9-103

• IgnoreDataChecking

See Also
• “Distributed Pipelining and Hierarchical Distributed Pipelining” on page
15-53

• “Specify Distributed Pipelining” on page 15-56

• “Distributed Pipeline Insertion for MATLAB Function Blocks” on page
20-42

FlattenHierarchy
FlattenHierarchy enables you to remove subsystem hierarchy from the
HDL code generated from your design.

The FlattenHierarchy options for a subsystem are listed in the following
table.

FlattenHierarchy Setting Description

'inherit' (default) Use the hierarchy flattening setting
of the parent subsystem. If this
subsystem is the highest-level
subsystem, do not flatten.

'on' Flatten this subsystem.

'off' Do not flatten this subsystem, even
if the parent subsystem is flattened.

Prerequisites For Hierarchy Flattening
To flatten hierarchy, a subsystem must have the following block properties.
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Property Required value

DistributedPipelining 'off'

StreamingFactor 0

SharingFactor 0

To flatten hierarchy, you must also have the MaskParameterAsGeneric global
property set to 'off'. For more information, see MaskParameterAsGeneric.

How To Flatten Hierarchy
To set hierarchy flattening using the HDL Block Properties dialog box:

1 Right-click the subsystem.

2 Select HDL Code > HDL Block Properties .

3 For FlattenHierarchy, select on, off, or inherit.

To set hierarchy flattening from the command line, use hdlset_param. For
example, to turn on hierarchy flattening for a subsystem, my_dut:

hdlset_param('my_dut', 'FlattenHierarchy', 'on')

See also hdlset_param.

Limitations For Hierarchy Flattening
A subsystem cannot be flattened if the subsystem is:

• Atomic and instantiated in the design more than once.

• A black box implementation or model reference.

• An enabled or triggered subsystem.

• A masked subsystem.
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Note This option removes subsystem boundaries before code generation. It
does not necessarily generate HDL code with a completely flat hierarchy.

InputPipeline
InputPipeline lets you specify a implementation with input pipelining for
selected blocks. The parameter value specifies the number of input pipeline
stages (pipeline depth) in the generated code.

The following figure shows the InputPipeline parameter set to 2 in the HDL
Properties dialog box for an Add block .

The following code specifies an input pipeline depth of two stages for each
Sum block in the model:

sblocks = find_system(gcb, 'BlockType', 'Sum');

for ii=1:length(sblocks),hdlset_param(sblocks{ii},'InputPipeline', 2), end;

When generating code for pipeline registers, the coder appends a postfix string
to names of input or output pipeline registers. The default postfix string is
_pipe. To customize the postfix string, use the Pipeline postfix option in
the Global Settings / General pane in the HDL Code Generation pane
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of the Configuration Parameters dialog box. Alternatively, you can pass
the desired postfix string in the makehdl property PipelinePostfix. See
PipelinePostfix for an example.

InstantiateFunctions
For the MATLAB Function block, you can use the InstantiateFunctions
parameter to generate a VHDL entity or Verilog module for each function.
The coder generates code for each entity or module in a separate file.

The InstantiateFunctions options for the MATLAB Function block are
listed in the following table.

InstantiateFunctions Setting Description

'off' (default) Generate code for functions inline.

'on' Generate a VHDL entity or Verilog
module for each function, and save
each module or entity in a separate
file.

Generate Instantiable Code for Functions
To set the InstantiateFunctions parameter using the HDL Block Properties
dialog box:

1 Right-click the MATLAB Function block.

2 Select HDL Code > HDL Block Properties.

3 For InstantiateFunctions, select on.

To set the InstantiateFunctions parameter from the command line, use
hdlset_param. For example, to generate instantiable code for functions in a
MATLAB Function block, myMatlabFcn, in your DUT subsystem, myDUT, enter:

hdlset_param('my_DUT/my_MATLABFcnBlk', 'InstantiateFunctions', 'on')
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Generate Code Inline for Specific Functions
If you want to generate instantiable code for some functions but not others,
enable the option to generate instantiable code for functions, and use
coder.inline. See coder.inline for details.

Limitations for Instantiable Code Generation for Functions
The software generates code inline when:

• Function calls are within conditional code or for loops.

• Any function is called with a nonconstant struct input.

• The function has state, such as a persistent variable, and is called multiple
times.

LoopOptimization
LoopOptimization enables you to stream or unroll loops in code generated
from a MATLAB Function block. Loop streaming optimizes for area; loop
unrolling optimizes for speed.

The LoopOptimization options for the MATLAB Function block are listed
in the following table.

LoopOptimization Setting Description

'none' (default) Do not optimize loops.

'Unrolling' Unroll loops.

'Streaming' Stream loops.

How to Optimize MATLAB Function Block For Loops
To select a loop optimization using the HDL Block Properties dialog box:

1 Right-click the MATLAB Function block.

2 Select HDL Code > HDL Block Properties.

3 For LoopOptimization, select none, Unrolling, or Streaming.
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To select a loop optimization from the command line, use hdlset_param. For
example, to turn on loop streaming for a MATLAB Function block, my_mlfn:

hdlset_param('my_mlfn', 'LoopOptimization', 'Streaming')

See also hdlset_param.

Limitations for MATLAB Function Block Loop Optimization
The coder cannot stream a loop if:

• The loop index counts down. The loop index must increase by 1 on each
iteration.

• There are 2 or more nested loops at the same level of hierarchy within
another loop.

• Any particular persistent variable is updated both inside and outside a loop.

The coder can stream a loop when the persistent variable is:

• Updated inside the loop and read outside the loop.

• Read within the loop and updated outside the loop.
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MapPersistentVarsToRAM
With the MapPersistentVarsToRAM implementation parameter, you can use
RAM-based mapping for persistent arrays of a MATLAB Function block
instead of mapping to registers.
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Mapping Behavior for Persistent Arrays

MapPersistentVarsToRAM
Setting

Mapping Behavior

off Persistent arrays map to registers in the generated HDL code.

on A persistent array maps to a block RAM when all of the following
conditions are true:

• Each read or write access is for a single element only. For
example, submatrix access and array copies are not allowed.

• Address computation logic is not read-dependent. For
example, computation of a read or write address using the
data read from the array is not allowed.

• If an access is within a conditional statement, the conditional
statement uses only simple logic expressions (&&, ||, ~) or
relational operators. For example, in the following code, r1
does not map to RAM:

if (mod(i,2) > 0)
a = r1(u);

else
r1(i) = u;

end

Rewrite complex conditions, such as conditions that call
functions, by assigning them to temporary variables, and
using the temporary variables in the conditional statement.
For example, to map r1 to RAM, rewrite the previous code
as follows:

temp = mod(i,2);
if (temp > 0)

a = r1(u);
else

r1(i) = u;
end

• The persistent array value depends on external inputs.
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MapPersistentVarsToRAM
Setting

Mapping Behavior

For example, in the following code, bigarray does not map to
RAM because it does not depend on u:

function z = foo(u)

persistent cnt bigarray
if isempty(cnt)

cnt = fi(0,1,16,10,hdlfimath);
bigarray = uint8(zeros(1024,1));

end
z = u + cnt;
idx = uint8(cnt);
temp = bigarray(idx+1);
cnt(:) = cnt + fi(1,1,16,0,hdlfimath) + temp;
bigarray(idx+1) = idx;

• RAMSize is greater than or equal to the RAMMappingThreshold
value. RAMSize is the product NumElements * WordLength *
Complexity.

- NumElements is the number of elements in the array.

- WordLength is the number of bits that represent the data
type of the array.

- Complexity is 2 for arrays with a complex base type; 1
otherwise.

If any of the above conditions is false, the persistent array maps
to a register in the HDL code.

RAMMappingThreshold
The default value of RAMMappingThreshold is 256. To change the threshold,
use hdlset_param. For example, the following command changes the mapping
threshold for the sfir_fixed model to 128 bits:

hdlset_param('sfir_fixed', 'RAMMappingThreshold', 128);
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You can also change the RAM mapping threshold in the Configuration
Parameters dialog box. For more information, see “HDL Code Generation
Pane: Global Settings” on page 9-22.

Example
For an example that shows how to map persistent array variables to RAM in
a MATLAB Function block, see “RAM Mapping with the MATLAB Function
Block” on page 15-45.

OutputPipeline
OutputPipeline lets you specify a implementation with output pipelining for
selected blocks. The parameter value specifies the number of output pipeline
stages (pipeline depth) in the generated code.

The following figure shows the OutputPipeline parameter set to 2 in the
HDL Properties dialog box for an Add block .

The following code specifies an output pipeline depth of two stages for each
Sum block in the model:

sblocks = find_system(gcb, 'BlockType', 'Sum');
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for ii=1:length(sblocks),hdlset_param(sblocks{ii},'OutputPipeline', 2), end;

When generating code for pipeline registers, the coder appends a postfix
string to names of input or output pipeline registers. The default postfix
string is _pipe. To customize the postfix string, use the Pipeline postfix
option in the Configuration Parameters dialog box, in the HDL Code
Generation > Global Settings > General tab. Alternatively, you can use
the PipelinePostfix property with makehdl. See PipelinePostfix for an
example.

See also “Distributed Pipeline Insertion for MATLAB Function Blocks” on
page 20-42.

Pipelining Implementation Parameters for Filter
Blocks
The following implementation parameters for filter blocks provide
block-specific pipelining support.

• AddPipelineRegisters (Default: off): Inserts a pipeline register between
stages of computation in a filter.

• MultiplierInputPipeline (Default: 0): Generates a specified number of
pipeline stages at multiplier inputs for FIR filter structures.

• MultiplierOutputPipeline (Default: 0): Generates a specified number of
pipeline stages at multiplier outputs for FIR filter structures.

The following figure shows these parameters, set to their default values, in
the HDL Block Properties dialog box for a Digital Filter block.
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The following table summarizes the filter blocks that support one or more
of these parameters:

Filter Block Supports
AddPipelineRegisters

Supports
MultiplierInputPipeline

Supports
MultiplierOutputPipeline

Digital Filter Yes Yes Yes

Discrete FIR
Filter

Yes Yes Yes
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Filter Block Supports
AddPipelineRegisters

Supports
MultiplierInputPipeline

Supports
MultiplierOutputPipeline

FIR
Decimation

Yes Yes Yes

FIR
Interpolation

Yes Yes Yes

CIC
Decimation

Yes N/A N/A

CIC
Interpolation

Yes N/A N/A

Biquad
Filter

Yes N/A N/A

AddPipelineRegisters Details
The following table summarizes how enabling AddPipelineRegisters causes
the different filter implementations to place pipeline registers, and the
resultant latency.

Filter Block Pipeline Register
Placement

Latency (clock cycles)

Digital Filter
(FIR, Asymmetric FIR,
and Symmetric FIR
filters)

A pipeline register is
added between levels of
a tree-based adder.

Where FL is the filter
length:
ceil(log2(FL)

Digital Filter
(FIR Transposed)

A pipeline register
is added after the
products.

1

Digital Filter
(IIR SOS)

Pipeline registers are
added between the
filter sections.

Where NS is number of
sections:
NS-1
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Filter Block Pipeline Register
Placement

Latency (clock cycles)

FIR Decimation One pipeline register is
added between levels of
a tree-based adder, and
one is added after the
products.

Where NZ is the number
of non-zero coefficients:
ceil(log2(NZ))

FIR Interpolation A pipeline register is
added between levels of
a tree-based adder.

Where PL is polyphse
filter length:
ceil(log2(PL))-1

CIC Decimation A pipeline register is
added between the
comb stages of the
differentiators .

Where NS is number of
sections (at the input
side):
NS-1

CIC Interpolation A pipeline register is
added between the
comb stages of the
differentiators.

Where NS is number of
sections
NS

Biquad Filter Pipeline registers are
added between the
filter sections.

Where NS is number of
sections:
NS-1

Limitations
Take note of the following limitations when applying AddPipelineRegisters,
MultiplierInputPipeline, and MultiplierOuputPipeline:

• For FIR Filters, the coder places pipeline stages in the adder tree structure.
In cases where the filter datapath is not full precision, this causes numeric
differences between the original model and the generated model. To avoid
such discrepancies, the coder modifies the filter block parameters in the
generated model to full precision.

• Pipeline stages inserted by AddPipelineRegisters,
MultiplierInputPipeline, and MultiplierOuputPipeline
introduce delays along the path in the model that contains the affected
filter. However, equivalent delays are not introduced on other, parallel
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signal paths. To balance delays, use OutputPipeline on parallel data
paths.

RAM
The following blocks support RAM based implementations as an alternative
to shift register based implementations.

• commcnvintrlv2/Convolutional Deinterleaver

• commcnvintrlv2/Convolutional Interleaver

• commcnvcod2/Viterbi Decoder

The following figure shows the RAM and shift register options in the HDL
Properties dialog box for a Convolutional Deinterleaver.

The following figure shows the RAM-based traceback option in the HDL
Properties dialog box for a Viterbi Decoder.
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ResetType
The ResetType implementation parameter lets you suppress generation of
reset logic for the following block types:

• commcnvintrlv2/Convolutional Deinterleaver

• commcnvintrlv2/Convolutional Interleaver

• commcnvintrlv2/General Multiplexed Deinterleaver

• commcnvintrlv2/General Multiplexed Interleaver

• dspsigops/Delay

• simulink/Additional Math & Discrete/Additional Discrete/Unit Delay
Enabled

• simulink/Commonly Used Blocks/Unit Delay

• simulink/Discrete/Delay

• simulink/Discrete/Memory

• simulink/Discrete/Tapped Delay
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• simulink/User-Defined Functions/MATLAB Function

• sflib/Chart

• sflib/Truth Table

The following figure shows the reset type option in the HDL Properties dialog
box for a Unit Delay block.

When you specify ResetType as 'default', the coder follows the Global
Settings/Advanced Reset type option for the specified blocks.

When you specify ResetType as 'none' for a selection of one or more blocks,
the coder overrides the Global Settings/Advanced Reset type option for the
specified blocks only. Reset signals and synchronous or asynchronous reset
logic (as specified by Reset type) is still generated as required for other
blocks.

Note that when you set ResetType to'none', reset is not applied to generated
registers. Mismatches between Simulink and the generated code occur for
some number of samples during the initial phase, when registers are not
fully loaded. To avoid spurious test bench errors, determine the number of
samples required to fully load the registers. Then, set the Ignore output
data checking (number of samples) option accordingly. (You can use
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the IgnoreDataChecking property for this purpose, if you are using the
command-line interface.) See also IgnoreDataChecking.

The following code specifies suppression of reset logic for a specific unit delay
block within a subsystem.

hdlset_param('rst_examp/ADut/UnitDelay1','ResetType','none');

ShiftRegister
The following blocks support shift register based implementations. (See
“Convolutional Interleaver and Deinterleaver Block Requirements and
Restrictions” on page 11-34.)

• commcnvintrlv2/Convolutional Deinterleaver

• commcnvintrlv2/Convolutional Interleaver

• commcnvintrlv2/General Multiplexed Deinterleaver

• commcnvintrlv2/General Multiplexed Interleaver

The following figure shows the shift register option in the HDL Properties
dialog box for a Convolutional Deinterleaver .
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UseRAM
The UseRAM implementation parameter enables using RAM-based mapping
for a block instead of mapping to a shift register. This implementation
parameter is available for the Delay block in the Simulink Discrete library
and the Delay block in the DSP System Toolbox Signal Operations library.

Mapping of a Single Delay to a RAM

UseRAM Setting Mapping Behavior

off The delay maps to a shift register in the generated HDL code,
except in one case. For details, see “Effects of Streaming and
Distributed Pipelining” on page 11-94.

on The delay maps to a dual-port RAM block when all of the
following conditions are true:

• Initial value of the delay is zero.

• Delay length > 4.
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UseRAM Setting Mapping Behavior

• Delay has one of the following set of numeric and data type
attributes:

- (a) Real scalar with a non-floating-point data type (such as
signed integer, unsigned integer, fixed point, or Boolean)

- (b) Complex scalar with real and imaginary parts that use
non-floating-point data type

- (c) Vector where each element is either (a) or (b)

• RAMSize is greater than or equal to the RAMMappingThreshold
value. RAMSize is the product DelayLength * WordLength *
ComplexLength.

- DelayLength is the number of delays that the Delay block
specifies.

- WordLength is the number of bits that represent the data
type of the delay.

- ComplexLength is 2 for complex signals; 1 otherwise.

If any condition is false, the delay maps to a shift register in the
HDL code unless it merges with other delays to map to a single
RAM. For more information, see “Mapping of Multiple Delays to
a RAM” on page 11-92.

The default value of RAMMappingThreshold is 256. To change the threshold,
use hdlset_param. For example, the following command changes the mapping
threshold for the sfir_fixed model to 128 bits:

hdlset_param('sfir_fixed', 'RAMMappingThreshold', 128);

You can also change the RAM mapping threshold in the Configuration
Parameters dialog box. For more information, see “HDL Code Generation
Pane: Global Settings” on page 9-22.
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Mapping of Multiple Delays to a RAM
The coder can also merge several delays of equal length into one delay and
then map the merged delay to a single RAM. This optimization provides the
following benefits:

• Increased occupancy on a single RAM

• Sharing of address generation logic, which minimizes duplication of
identical HDL code

• Mapping of delays to a RAM when the individual delays do not satisfy
the threshold

The following rules control whether or not multiple delays can merge into
one delay:

• The delays must:

- Be at the same level of the subsystem hierarchy.

- Use the same compiled sample time.

- Have UseRAM set to on, or be generated by streaming or resource sharing.

- Have the same ResetType setting, which cannot be none.

• The total word length of the merged delay cannot exceed 128 bits.

• The RAMSize of the merged delay is greater than or equal to the
RAMMappingThreshold value. RAMSize is the product DelayLength *
WordLength * VectorLength * ComplexLength.

- DelayLength is the total number of delays.

- WordLength is the number of bits that represent the data type of the
merged delay.

- VectorLength is the number of elements in a vector delay. VectorLength
is 1 for a scalar delay.

- ComplexLength is 2 for complex delays; 1 otherwise.

Example of Multiple Delays Mapping to a RAM
RAMMappingThreshold for the following model is 100 bits.
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The Delay and Delay1 blocks merge and map to a dual-port RAM in the
generated HDL code by satisfying the following conditions:

• Both delay blocks:

- Are at the same level of the hierarchy.

- Use the same compiled sample time.

- Have UseRAM set to on in the HDL block properties dialog box.

- Have the same ResetType setting of default.

• The total word length of the merged delay is 28 bits, which is below the
128-bit limit.

• The RAMSize of the merged delay is 112 bits (4 delays * 28-bit word length),
which is greater than the mapping threshold of 100 bits.

When you generate HDL code for this model, the coder generates additional
files to specify RAM mapping. The coder stores these files in the same source
location as other generated HDL files, for example, the hdlsrc folder.
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Effects of Streaming and Distributed Pipelining
When UseRAM is off for a Delay block, the coder maps the delay to a shift
register by default. However, the coder changes the UseRAM setting to on and
tries to map the delay to a RAM under the following conditions:

• Streaming is enabled for the subsystem with the Delay block.

• Distributed pipelining is disabled for the subsystem with the Delay block.

Suppose that distributed pipelining is enabled for the subsystem with the
Delay block.

• When UseRAM is off, the Delay block participates in retiming.

• When UseRAM is on, the Delay block does not participate in retiming. The
coder does not break up a delay marked for RAM mapping.

Consider a subsystem with two Delay blocks, three Constant blocks, and
three Product blocks:

When UseRAM is on for the Delay block on the right, that delay does not
participate in retiming.
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The following summary describes whether or not the coder tries to map a
delay to a RAM instead of a shift register.

Optimizations Enabled for Subsystem with Delay
Block

UseRAM
Setting for
the Delay
Block Distributed

Pipelining Only
Streaming Only Both Distributed

Pipelining and
Streaming

On Yes Yes Yes

Off No Yes, because
mapping to a
RAM instead of
a shift register
can provide an
area-efficient
design.

No

Speed vs. Area Optimizations for FIR Filter
Implementations

Overview of Speed vs. Area Optimizations
The coder provides options that extend your control over speed vs. area
tradeoffs in the realization of FIR filter designs. To achieve the desired
tradeoff, you can either specify a fully parallel architecture for generated HDL
filter code, or choose one of several serial architectures.“Parallel and Serial
Architectures” on page 11-96 describes the supported architectures.

The following blocks support these architecture options:

• dsparch4/Digital Filter

• dspmlti4/FIR Decimation

• dspmlti4/FIR.Interpolation

• simulink/Discrete/Discrete FIR Filter
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You can specify the full range of parallel and serial architecture options using
implementation parameters, as described in “Implementation Parameters for
Specifying Speed vs. Area Tradeoffs” on page 11-97

Parallel and Serial Architectures

Fully Parallel Architecture. This is the default option. A fully parallel
architecture uses a dedicated multiplier and adder for each filter tap; the
taps execute in parallel. A fully parallel architecture is optimal for speed.
However, it requires more multipliers and adders than a serial architecture,
and therefore consumes more chip area.

Serial Architectures. Serial architectures reuse hardware resources in time,
saving chip area. The coder provides a range of serial architecture options,
summarized below. These architectures have a latency of one clock period (see
“Latency in Serial Architectures” on page 11-97).

The available serial architecture options are

• Fully serial: A fully serial architecture conserves area by reusing multiplier
and adder resources sequentially. For example, a four-tap filter design
would use a single multiplier and adder, executing a multiply/accumulate
operation once for each tap. The multiply/accumulate section of the design
runs at four times the filter’s input/output sample rate. This saves area at
the cost of some speed loss and higher power consumption.

In a fully serial architecture, the system clock runs at a much higher
rate than the sample rate of the filter. Thus, for a given filter design, the
maximum speed achievable by a fully serial architecture will be less than
that of a parallel architecture.

• Partly serial: Partly serial architectures cover the full range of speed vs.
area tradeoffs that lie between fully parallel and fully serial architectures.

In a partly serial architecture, the filter taps are grouped into a number of
serial partitions. The taps within each partition execute serially, but the
partitions execute in parallel with respect to one another. The outputs of
the partitions are summed at the final output.

When you select a partly serial architecture, you specify the number of
partitions and the length (number of taps) of each partition. For example,
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you could specify a four-tap filter with two partitions, each having two taps.
The system clock would run at twice the filter’s sample rate.

• Cascade-serial: A cascade-serial architecture closely resembles a partly
serial architecture. As in a partly serial architecture, the filter taps are
grouped into a number of serial partitions that execute in parallel with
respect to one another. However, the accumulated output of each partition
is cascaded to the accumulator of the previous partition. The output of all
partitions is therefore computed at the accumulator of the first partition.
This technique is termed accumulator reuse. A final adder is not required,
which saves area.

The cascade-serial architecture requires an extra cycle of the system clock
to complete the final summation to the output. Therefore, the frequency of
the system clock must be increased slightly with respect to the clock used
in a non-cascade partly serial architecture.

To generate a cascade-serial architecture, you specify a partly serial
architecture with accumulator reuse enabled (see “Implementation
Parameters for Specifying Speed vs. Area Tradeoffs” on page 11-97. If
you do not specify the serial partitions, the coder automatically selects an
optimal partitioning.

Latency in Serial Architectures. Serialization of a filter increases the total
latency of the design by one clock cycle. The serial architectures use an
accumulator (an adder with a register) to add the products sequentially. An
additional final register is used to store the summed result of all the serial
partitions, requiring an extra clock cycle for the operation. To handle latency,
the coder inserts a Delay block into the generated model after the filter block.

Implementation Parameters for Specifying Speed vs. Area
Tradeoffs
By default, makehdl generates filter code using a fully parallel architecture. If
you want to generate FIR filter code with a fully parallel architecture, you
do not need to specify this explicitly.

Two implementation parameters specify serial architecture options when
generating code via makehdl:

• 'SerialPartition': This parameter specifies the serial partitioning of
the filter.
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• 'ReuseAccum': This parameter enables or disables accumulator reuse.

The following figure shows these parameters (at default values) on the HDL
Properties dialog box for a Digital Filter block.

The table below summarizes how to set these parameters to generate the
desired architecture.
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To Generate
This
Architecture...

Set SerialPartition to... Set ReuseAccum to...

Fully parallel Omit this property Omit this property

Fully serial N, where N is the length of the filter Not specified, or 'off'

Partly serial [p1 p2 p3...pN] : a vector of integers having
N elements, where N is the number of serial
partitions. Each element of the vector specifies
the length of the corresponding partition. The
sum of the vector elements must be equal to
the length of the filter. When you define the
partitioning for a partly serial architecture,
consider the following:

• The filter length should be divided as
uniformly as possible into a vector of length
equal to the number of multipliers intended.
For example, if your design requires a filter of
length 9 with 2 multipliers, the recommended
partition is [5 4]. If your design requires 3
multipliers, the recommended partition is[3 3
3] rather than some less uniform division such
as [1 4 4] or [3 4 2].

• If your design is constrained by the need to
compute each output value (corresponding to
each input value) in an exact number N of clock
cycles, use N as the largest partition size and
partition the other elements as uniformly as
possible. For example, if the filter length is 9
and your design requires exactly 4 cycles to
compute the output, define the partition as [4
3 2]. This partition executes in 4 clock cycles,
at the cost of 3 multipliers.

'off'

11-99



11 Guide to Supported Blocks and Block Implementations

To Generate
This
Architecture...

Set SerialPartition to... Set ReuseAccum to...

Cascade-serial
with explicitly
specified
partitioning

[p1 p2 p3...pN]: a vector of integers having
N elements, where N is the number of serial
partitions. Each element of the vector specifies
the length of the corresponding partition. The
sum of the vector elements must be equal to
the length of the filter. The values of the vector
elements must be in descending order, except
that the last two element must be equal. For
example, for a filter of length 9, partitions such
as[5 4] or [4 3 2] would be legal, but the
partitions [3 3 3] or [3 2 4] would raise an
error at code generation time.

'on'

Cascade-serial
with
automatically
optimized
partitioning

Omit this property 'on'

FIR Interpolation Block Exception. The SerialPartition property is set
automatically for you on the FIR Interpolation Block when you select Fully
Serial architecture.
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Filter Block Settings and Limitations. When you specify SerialPartition
and ReuseAccum for a Digital Filter block, observe the following constraints.

• If you specify Dialog parameters as the Coefficient source:

- Set Transfer function type to FIR (all zeros).

- Select Filter structure as one of : Direct form,, Direct form
symmetric, or Direct form asymmetric.

• If you specify Discrete-time filter object as the Coefficient source,
the filter object must be one of the following:

- dfilt.dffir

- dfilt.dfsymfir

- dfilt.dfasymfir
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When you specify SerialPartition and ReuseAccum for a Discrete FIR Filter
block, select Filter structure as one of the following:

• Direct form

• Direct form symmetric

• Direct form asymmetric

Observe the following limitations for FIR Decimation filters:

• The coder supports SerialPartition only for the FIR Direct Form
structure.

• Accumulator reuse is not supported.

The coder supports serial partitioning for filter blocks only if all settings of
the filter block are in full precision.

Use Full Precision Filter Settings. The coder supports serial partitioning
for filter blocks only if all settings of the filter block are in full precision.

Interface Generation Parameters
Some block implementation parameters let you customize features of an
interface generated for the following block types:

• simulink/Ports & Subsystems/Model

• built-in/Subsystem

• lfilinklib/HDL Cosimulation

• modelsimlib/HDL Cosimulation

For example, you can specify generation of a black box interface for a
subsystem, and pass parameters that specify the generation and naming
of clock, reset, and other ports in HDL code. For more information about
interface generation parameters, see “Customize the Generated Interface” on
page 18-63.
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Blocks That Support Complex Data
You can use complex signals in the test bench without restriction.

In the device under test (DUT) selected for HDL code generation, support for
complex signals is limited to a subset of the blocks that the coder supports.
These blocks appear in the following table. Some restrictions apply for some
of these blocks.

Note All blocks listed support the InputPipeline and OutputPipeline
implementation parameters.

Complex data expands into real and imaginary signals. The naming
conventions for these derived signals are:

• Real components have the same name as the original complex signal,
suffixed with the default string '_re' (for example, x_re). To specify
a different suffix, set the Complex real part postfix option (or the
corresponding ComplexRealPostfix CLI property).

• Imaginary components have the same name as the original complex
signal, suffixed with the string '_im' (for example, x_im). To specify a
different suffix, set the Complex imaginary part postfix option (or the
corresponding ComplexImagPostfix CLI property).

Simulink Block Restrictions

dspadpt3/LMS Filter

dspindex/Variable Selector

dsparch4/Biquad Filter See “Complex Coefficients and Data
Support for the Digital Filter and
Biquad Filter Blocks” on page 11-107

dsparch4/Digital Filter See “Complex Coefficients and Data
Support for the Digital Filter and
Biquad Filter Blocks” on page 11-107

dspindex/Multiport Selector
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Simulink Block Restrictions

dspsigattribs/Convert 1-D to 2-D

dspsigattribs/Frame Conversion

dspsigops/Delay

dspsigops/Downsample

dspsigops/NCO

Note HDL support for the NCO
block will be removed in a future
release. Use the NCO HDL
Optimized block instead.

dspsigops/Upsample

dspsrcs4/DSP Constant

dspsrcs4/Sine Wave

hdldemolib/Dual Port RAM

hdldemolib/Simple Dual Port RAM

hdldemolib/Single Port RAM

hdldemolib/HDL FFT

hdldemolib/HDL Streaming FFT

sflib/Chart

simulink/Additional Math &
Discrete/Additional Discrete/Unit
Delay Enabled

simulink/Commonly Used
Blocks/Constant

simulink/Commonly Used
Blocks/Data Type Conversion

simulink/Commonly Used
Blocks/Demux
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Simulink Block Restrictions

simulink/Commonly Used
Blocks/Gain

simulink/Commonly Used
Blocks/Ground

simulink/Commonly Used
Blocks/Product

simulink/Commonly Used
Blocks/Sum

simulink/Commonly Used
Blocks/Mux

simulink/Commonly Used
Blocks/Relational Operator

~= and == operators only

simulink/Commonly Used
Blocks/Switch

simulink/Commonly Used
Blocks/Unit Delay

simulink/Discrete/Delay

simulink/Discrete/Memory

simulink/Discrete/Zero-Order Hold

simulink/Discrete/Tapped Delay

simulink/Logic and Bit
Operations/Compare To Constant

simulink/Logic and Bit
Operations/Compare To Zero

simulink/Logic and Bit
Operations/Shift Arithmetic

simulink/Lookup Tables/1-D Lookup
Table

simulink/Math Operations/Add
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Simulink Block Restrictions

simulink/Math
Operations/Assignment

simulink/Math Operations/Complex
to Real-Imag

simulink/Math Operations/Unary
Minus

simulink/Math Operations/Math
Function

The conj, hermitian, and
transpose functions support
complex data.

simulink/Math Operations/Matrix
Concatenate

simulink/Math Operations/Product
of Elements

Only the default (linear)
implementation supports complex
data.

Complex division is not supported.

simulink/Math
Operations/Real-Imag to Complex

simulink/Math Operations/Reshape

simulink/Math Operations/Subtract Only the default (linear)
implementation supports complex
data.

simulink/Math Operations/Sum of
Elements

Only the default (linear)
implementation supports complex
data.

simulink/Math Operations/Vector
Concatenate

simulink/Signal Attributes/Rate
Transition

simulink/Signal Attributes/Signal
Conversion
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Simulink Block Restrictions

simulink/Signal Attributes/Signal
Specification

simulink/Signal Routing/Index
Vector

simulink/Signal Routing/Multiport
Switch

simulink/Signal Routing/Selector

simulink/User-Defined
Functions/MATLAB Function

See also “Complex Data Type
Support” on page 1-12.

Complex Coefficients and Data Support for the
Digital Filter and Biquad Filter Blocks
The coder supports use of complex coefficients and complex input signals
for all filter structures of the Digital Filter and Biquad Filter blocks, except
decimators and interpolators. In many cases, you can use complex data and
complex coefficients in combination. The following table shows the filter
structures that support complex data and/or coefficients, and the permitted
combinations.

Filter Structure Complex
Data

Complex
Coefficients

Complex Data
and Coefficients

dfilt.dffir Y Y Y

dfilt.dfsymfir Y Y Y

dfilt.dfasymfir Y Y Y

dfilt.dffirt Y Y Y

dfilt.scalar Y Y Y

dfilt.delay Y N/A N/A

mfilt.cicdecim Y N/A N/A

mfilt.cicinterp Y N/A N/A

mfilt.firdecim Y Y N
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Filter Structure Complex
Data

Complex
Coefficients

Complex Data
and Coefficients

mfilt.firinterp Y Y N

dfilt.df1sos Y Y Y

dfilt.df1tsos Y Y Y

dfilt.df2sos Y Y Y

dfilt.df2tsos Y Y Y
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Blocks That Support Buses

In this section...

“Supported Bus Blocks” on page 11-109

“Settings and Requirements” on page 11-109

“Limitations” on page 11-112

“See Also” on page 11-113

Supported Bus Blocks
The following bus-capable blocks support HDL code generation:

• Bus Creator

• Bus Selector

If you want to use buses in your design and you want to generate HDL
code, then you must use these blocks for the buses in your design. No other
bus-capable blocks support HDL code generation.

Settings and Requirements
Although the Bus Creator and Bus Selector blocks do not have new GUI
elements for code generation, there are some conditions you must meet for
HDL code generation.

Requirements
Make sure the buses at the level you want to generate code from are connected
to either a Bus Creator or Bus Selector block.

Settings

• Perform one of the following tasks to enable HDL code generation:

- Run function hdlsetup at the MATLAB command prompt.

- Set the Simulation > Configuration
Parameters > Diagnostics > Connectivity→Mux blocks used to
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create bus signals parameter to error. For details, see “Prevent
Bus and Mux Mixtures”.

• In the Bus Creator dialog:

- Make sure Output as nonvirtual bus is not checked.

- Make sure Bus Creator output is a BusObject.
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• In the Bus Selector dialog, make sure Output as a bus is not checked.

Limitations
HDL code generation for buses does not support:

• Buses that do not have BusObject data type

• Non-virtual bus

• Output as a bus (for Bus Selector)

11-112



Blocks That Support Buses

• Other bus-capable blocks

• Bus input/output at top-level subsystem port

See Also

• Bus Creator

• Bus Selector
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Lookup Table Block Support
The coder supports the following lookup table (LUT) blocks:

• simulink/Lookup Tables/n-D Lookup Table

• simulink/Lookup Tables/Prelookup

• simulink/Lookup Tables/Direct Lookup Table (n-D)

• simulink/Lookup Tables/1-D Lookup Table

• simulink/Lookup Tables/2-D Lookup Table

When you configure a lookup table block for HDL code generation, observe the
requirements and limitations described in the following sections.

n-D Lookup Table

Required Block Settings

• Number of table dimensions: The coder supports a maximum dimension
of 2.

• Index search method: Select Evenly spaced points.

• Extrapolation method: The coder supports only Clip. The coder does not
support extrapolation beyond the table bounds.

• Interpolation method: The coder supports only Flat or Linear.

• Diagnostic for out-of-range input: Select Error. If you select other
options, the coder displays a warning.

• Use last table value for inputs at or above last breakpoint: Select
this check box.

• Require all inputs to have the same data type: Select this check box.

• Fraction: Select Inherit: Inherit via internal rule.

• Integer rounding mode: Select Zero, Floor, or Simplest.
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Avoid Generation of Divide Operator
The coder gives a warning if it encounters conditions under which a division
operation is required to match the model’s simulation behavior. The
conditions described in this section will cause the n-D Lookup Table block to
emit a divide operator. When you use the n-D Lookup Table block for HDL
code generation, you should avoid the following conditions:

• If the block is configured to use interpolation, a division operator will be
required. To avoid this, set Interpolation method : to Flat.

• The second way depends on the table spacing. HDL code generation
requires the block to use the "Evenly Spaced Points" algorithm. The block
mapping from the input data type to the zero-based table index in general
requires a division. When the breakpoint spacing is an exact power of 2,
this divide is implemented as a shift instead of as a divide. To adjust the
breakpoint spacing, you can adjust the number of breakpoints in the table
and/or the difference between the left and right bounds of the breakpoint
range.

Table Data Typing and Sizing

• It is good practice to structure your table such that the spacing between
breakpoints is a power of two. The coder issues a warning if the breakpoint
spacing does not meet this condition. When the breakpoint spacing is a
power of two, you can replace division operations in the prelookup step
with right-shift operations.

• Table data must resolve to a nonfloating-point data type.

• All ports on the block require scalar values.

Prelookup

Required Block Settings

• Index search method: Select Evenly spaced points.

• Extrapolation method: Select Clip.

• Diagnostic for out-of-range input: Select Error. If you select other
options, the coder displays a warning.
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• Use last breakpoint for input at or above upper limit: Select this
check box.

• Breakpoint data type: Select Inherit: Same as input.

• Integer rounding mode: Select Zero, Floor, or Simplest.

Table Data Typing and Sizing

• It is good practice to structure your table such that the spacing between
breakpoints is a power of two. The coder issues a warning if the breakpoint
spacing does not meet this condition. When the breakpoint spacing is a
power of two, you can replace division operations in the prelookup step
with right-shift operations.

• All ports on the block require scalar values.

• The coder permits floating-point data for breakpoints.

Direct Lookup Table (n-D)

Required Block Settings

• Number of table dimensions: The coder supports a maximum dimension
of 2.

• Inputs select this object from table: Select Element.

• Make table an input: Clear this check box.

• Diagnostic for out-of-range input: Select Error. If you select other
options, the coder displays a warning.

Table Data Typing and Sizing

• It is good practice to size each dimension in the table to be a power of
two. The coder issues a warning if the length of a dimension (except the
innermost dimension) is not a power of two. By following this practice, you
can avoid multiplications during table indexing operations and realize a
more efficient table in hardware.
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• Table data must resolve to a nonfloating-point data type. The coder
examines the output port to verify that its data type meets this requirement.

• All ports on the block require scalar values.

1-D Lookup Table
The 1-D Lookup Table block is subject to the same limitations as the n-D
Lookup Table block. See “n-D Lookup Table” on page 11-114 for detailed
information.

2-D Lookup Table
The 2-D Lookup Table block is subject to the same limitations as the n-D
Lookup Table block. See “n-D Lookup Table” on page 11-114 for detailed
information.
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Code Generation from Multirate Models
The coder supports HDL code generation for single-clock and multiple clock
multirate models. Your model can include blocks running at multiple sample
rates:

• Within the device under test (DUT).

• In the test bench driving the DUT. In this case, the DUT inherits multiple
sample rates from its inputs or outputs.

• In both the test bench and the DUT.

A timing controller entity generates the required rates from a single master
clock using one or more counters, creating multiple clock enables. The
master clock rate is the fastest rate in the model in single clock mode. In
multiple clock mode, it can be any clock in the DUT. The outputs of the timing
controller are clock enable signals running at rates an integer multiple slower
than the timing controller’s master clock

Each timing controller entity definition is written to a separate code file. The
timing controller file and entity names derive from the name of the subsystem
that is selected for code generation (the DUT). To form the timing controller
name, the coder appends the value of the TimingControllerPostfix property
to the DUT name.

When using single clock mode, HDL code generated from multirate models
employs a single master clock that corresponds to the base rate of the DUT.
When using multiple clock mode, HDL code generated from multirate models
employs one clock input for each rate in the DUT. The number of timing
controllers generated in multiple clock mode depends on the design in the
DUT.

In general, generating HDL code for a multirate model does not differ greatly
from generating HDL code for a single-rate model. However, there are a few
requirements and restrictions on the configuration of the model and the use of
specialized blocks (such as Rate Transitions) that apply to multirate models.
For details, see “Configure Multirate Models for HDL Code Generation” on
page 12-3.
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Configure Multirate Models for HDL Code Generation

In this section...

“Overview” on page 12-3

“Configuring Model Parameters” on page 12-3

“Configuring Sample Rates in the Model” on page 12-4

“Block Configuration and Restrictions For Multirate DUTs” on page 12-4

Overview
Certain requirements and restrictions apply to multirate models that are
intended for HDL code generation. This section provides guidelines on how to
configure model and block parameters to meet these requirements.

Configuring Model Parameters
Before generating HDL code, configure the parameters of your model using
the hdlsetup command. This sets up your multirate model for HDL code
generation. This section summarizes settings applied to the model by
hdlsetup that are relevant to multirate code generation. These include:

• Solver options that are recommended or required for HDL code generation:

- Type: Fixed-step.

- Solver: Discrete (no continuous states). Other fixed-step solvers
could be selected, but this option is usually best for simulating discrete
systems.

- Tasking mode: Must be explicitly set to SingleTasking. Do not set
Tasking mode to Auto.

• hdlsetup configures the following Diagnostics / Sample time options for
all models:

- Multitask rate transition: error

- Single task rate transition: error

In multirate models intended for HDL code generation, Rate Transition
blocks must be explicitly inserted when blocks running at different rates
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are connected. Setting Multitask rate transition and Single task
rate transition to error to detect illegal rate transitions before code is
generated.

Configuring Sample Rates in the Model
The coder requires that at least one valid sample rate (sample time > 0) must
exist in the model. If all rates are 0, –1, or –2, the code generator (makehdl)
and compatibility checker (checkhdl) terminates with an error message.

Block Configuration and Restrictions For Multirate
DUTs

• “Subsystem with Black Box Interface” on page 12-4

• “Rate Transition” on page 12-4

• “Upsample” on page 12-5

• “Downsample” on page 12-5

• “Delay and Zero-Order Hold” on page 12-5

Subsystem with Black Box Interface
HDL code generation is not supported for multirate DUTs that contain a
subsystem with a black box interface.

Rate Transition
Rate Transition blocks must be explicitly inserted into the signal path when
blocks running at different rates are connected. For general information
about the Rate Transition block, see the Rate Transition block documentation.

Make sure the data transfer properties for Rate Transition blocks are set as
follows:

• Ensure deterministic data transfer: Selected.

• Ensure data integrity during data transfer: Selected.
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Upsample
When configuring Upsample blocks, set Frame based mode to Maintain
input frame size.

When the Upsample block is in this mode, Initial conditions has no effect
on generated code.

Downsample
Configure Downsample blocks as follows:

• Set Frame based mode to Maintain input frame size.

• Set Sample based mode to Allow multirate.

Given these Downsample block settings, Initial conditions has no effect on
generated code if Sample offset is set to 0.

Delay and Zero-Order Hold
Use Rate Transition blocks, rather than the following blocks, to create rate
transitions in models intended for HDL code generation:

• Delay

• Tapped Delay

• Unit Delay

• Unit Delay Enabled

• Zero-Order Hold

The Delay blocks listed should be configured to have the same input and
output sample rates.

Zero-Order Hold blocks must be configured with inherited (–1) sample times.
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Code Generation from a Multirate DUT
The following block diagram shows the interior of a subsystem containing
blocks that are explicitly configured with different sample times. The upper
and lower Counter Free-Running blocks have sample times of 10 s and 20 s
respectively. The counter output signals are routed to output ports ST10 and
ST20, which inherit their sample times. The signal path terminating at ST10
runs at the base rate of the model; the signal path terminating at ST20 is a
subrate signal, running at half the base rate of the model.

As shown in the next figure, the outputs of the multirate DUT drive To
Workspace blocks in the test bench. These blocks inherit the sample times
of the DUT outputs.
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The following listing shows the VHDL entity declaration generated for the
DUT.

ENTITY DUT IS

PORT( clk : IN std_logic;

reset : IN std_logic;

clk_enable : IN std_logic;

ce_out_0 : OUT std_logic;

ce_out_1 : OUT std_logic;

ST10 : OUT std_logic_vector(7 DOWNTO 0); -- uint8

ST20 : OUT std_logic_vector(5 DOWNTO 0) -- ufix6

);

END DUT;

The entity has the standard clock, reset, and clock enable inputs and data
outputs for the ST10 and ST20 signals. In addition, the entity has two clock
enable outputs (ce_out_0 and ce_out_1). These clock enable outputs replicate
internal clock enable signals maintained by the timing controller entity.

The following figure, showing a portion of a Mentor Graphics ModelSim
simulation of the generated VHDL code, lets you observe the timing
relationship of the base rate clock (clk), the clock enables, and the computed
outputs of the model.

After the assertion of clk_enable (replicated by ce_out_0), a new value is
computed and output to ST10 for every cycle of the base rate clock.
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A new value is computed and output for subrate signal ST20 for every other
cycle of the base rate clock. An internal signal, enb_1_2_1 (replicated by
ce_out_1) governs the timing of this computation.
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Generate a Global Oversampling Clock

In this section...

“Why Use a Global Oversampling Clock?” on page 12-9

“Requirements for the Oversampling Factor” on page 12-9

“Specifying the Oversampling Factor From the GUI” on page 12-10

“Specifying the Oversampling Factor From the Command Line” on page
12-12

“Resolving Oversampling Rate Conflicts” on page 12-12

Why Use a Global Oversampling Clock?
In many designs, the DUT is not self-contained. For example, consider a DUT
that is part of a larger system that supplies timing signals to its components
under control of a global clock. The global clock typically runs at a higher rate
than some of the components under its control. By specifying such a global
oversampling clock, you can integrate your DUT into a larger system without
using Upsample or Downsample blocks.

To generate global clock logic, you specify an oversampling factor. The
oversampling factor expresses the desired rate of the global oversampling
clock as a multiple of the base rate of your model.

When you specify an oversampling factor, the coder generates the global
oversampling clock and derives the required timing signals from clock signal.
Generation of the global oversampling clock affects only generated HDL code.
The clock does not affect the simulation behavior of your model.

Requirements for the Oversampling Factor
When you specify the oversampling factor for a global oversampling clock,
note these requirements:

• The oversampling factor must be an integer greater than or equal to 1.

• The default value is 1. In the default case, the coder does not generate a
global oversampling clock.
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• Some DUTs require multiple sampling rates for their internal operations.
In such cases, the other rates in the DUT must divide evenly into the global
oversampling rate. For more information, see “Resolving Oversampling
Rate Conflicts” on page 12-12 .

Specifying the Oversampling Factor From the GUI
You can specify the oversampling factor for a global clock from the GUI as
follows:

1 Select the HDL Code Generation > Global Settings pane in the
Configuration Parameters dialog box.

2 For Oversampling factor in the Clock settings section, enter the
desired oversampling factor. In the following figure, Oversampling
factor specifies a global oversampling clock that runs at ten times the
base rate of the model.
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3 Click Generate on the HDL Code Generation pane to initiate code
generation.

The coder reports the oversampling clock rate:

### Begin VHDL Code Generation

### MESSAGE: The design requires 10 times faster clock with respect to the base rate = 1.

### Working on symmetric_fir_tc as hdlsrc\symmetric_fir_tc.vhd

### Working on sfir_fixed/symmetric_fir as hdlsrc\symmetric_fir.vhd

### HDL Code Generation Complete.
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Specifying the Oversampling Factor From the
Command Line
You can specify the oversampling factor for a global clock from the command
line by setting the 'Oversampling', N property in the makehdl command.
The following example specifies an oversampling factor of 7:

>> makehdl(gcb,'Oversampling', 7)

### Generating HDL for 'sfir_fixed/symmetric_fir'

### Starting HDL Check.

### HDL Check Complete with 0 errors, 0 warnings and 0 messages.

### Begin VHDL Code Generation

### MESSAGE: The design requires 7 times faster clock with respect to the base rate = 1.

### Working on symmetric_fir_tc as hdlsrc\symmetric_fir_tc.vhd

### Working on sfir_fixed/symmetric_fir as hdlsrc\symmetric_fir.vhd

### HDL Code Generation Complete.

Resolving Oversampling Rate Conflicts

The HDL realization of some designs is inherently multirate, even though
the original Simulink model is single-rate. As an example, consider
the simplevectorsum_cascade model (also discussed in “View Latency
Differences After Area Optimization” on page 14-9).

This model consists of a subsystem, vsum, driven by a vector input of width 10,
with a scalar output. The following figure shows the root level of the model.
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The device under test is the vsum subsystem, shown in the following figure.
The subsystem contains a Sum block, configured for vector summation.

12-13



12 Generating HDL Code for Multirate Models

The simplevectorsum_cascade model specifies a cascaded implementation
(SumCascadeHDLEmission) for the Sum block. The generated HDL code for
a cascaded vector Sum block implementation runs at two effective rates: a
faster (oversampling) rate for internal computations and a slower rate for
input/output. The coder reports that the inherent oversampling rate for the
DUT is five times the base rate:

>> dut = 'simplevectorsum_cascade/vsum';

>> makehdl(dut);

### Generating HDL for 'simplevectorsum_cascade/vsum'

### Starting HDL Check.

### HDL Check Complete with 0 errors, 0 warnings and 0 messages.

### The code generation and optimization options you have chosen have introduced

additional pipeline delays.

### The delay balancing feature has automatically inserted matching delays for

compensation.

### The DUT requires an initial pipeline setup latency. Each output port

experiences these additional delays

### Output port 0: 1 cycles

### Begin VHDL Code Generation

### MESSAGE: The design requires 5 times faster clock with respect to the

base rate = 1.

...

In some cases, the clock requirements for such a DUT conflict with the global
oversampling rate. To avoid oversampling rate conflicts, verify that subrates
in the model divide evenly into the global oversampling rate.

For example, if you request a global oversampling rate of 8 for the
simplevectorsum_cascade model, the coder displays a warning and
ignores the requested oversampling factor. The coder instead respects the
oversampling factor that the DUT requests:

>> dut = 'simplevectorsum_cascade/vsum';

>> makehdl(dut,'Oversampling',8);

### Generating HDL for 'simplevectorsum/vsum'

### Starting HDL Check.
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### HDL Check Complete with 0 errors, 0 warnings and 0 messages.

### The code generation and optimization options you have chosen have introduced

additional pipeline delays.

### The delay balancing feature has automatically inserted matching delays for

compensation.

### The DUT requires an initial pipeline setup latency. Each output port

experiences these additional delays

### Output port 0: 1 cycles

### Begin VHDL Code Generation

### WARNING: The design requires 5 times faster clock with respect to

the base rate = 1, which is incompatible with the oversampling

value (8). Oversampling value is ignored.

...

An oversampling factor of 10 works in this case:

>> dut = 'simplevectorsum_cascade/vsum';

>> makehdl(dut,'Oversampling',10);

### Generating HDL for 'simplevectorsum_cascade/vsum'

### Starting HDL Check.

### HDL Check Complete with 0 errors, 0 warnings and 0 messages.

### The code generation and optimization options you have chosen have introduced

additional pipeline delays.

### The delay balancing feature has automatically inserted matching delays for

compensation.

### The DUT requires an initial pipeline setup latency. Each output port

experiences these additional delays

### Output port 0: 1 cycles

### Begin VHDL Code Generation

### MESSAGE: The design requires 10 times faster clock with respect to

the base rate = 1.

...
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Generate Multicycle Path Information Files

In this section...

“Overview” on page 12-16

“Format and Content of a Multicycle Path Information File” on page 12-17

“File Naming and Location Conventions” on page 12-23

“Generating Multicycle Path Information Files Using the GUI” on page
12-23

“Generating Multicycle Path Information Files Using the Command Line”
on page 12-24

“Limitations” on page 12-24

“Example of Generating a Multicycle Path Information File” on page 12-26

Overview
The coder implements multirate systems in HDL by generating a master
clock running at the model’s base rate, and generating subrate timing signals
from the master clock (see also “Code Generation from Multirate Models”
on page 12-2). The propagation time between two subrate registers can be
more than one cycle of the master clock. A multicycle path is a path between
two such registers.

When synthesizing HDL code, it is often useful to provide an analysis of
multicycle register-to-register paths to the synthesis tool. If the synthesis tool
can identify multicycle paths, you may be able to:

• Realize higher clock rates from your multirate design.

• Reduce the area of your design.

• Reduce the execution time of the synthesis tool.

Using the Generate multicycle path information option (or the
equivalent'MulticyclePathInfo' property for makehdl) you can instruct
the coder to analyze multicycle paths in the generated code, and generate a
multicycle path information file.
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A multicycle path information file is a text file that describes one or more
multicycle path constraints. A multicycle path constraint is a timing exception
– it relaxes the default constraints on the system timing by allowing signals
on a given path to have a longer propagation time. When using multiple clock
mode, the file also contains clock definitions.

Typically a synthesis tool gives every signal a time budget of exactly 1 clock
cycle to propagate from a source register to a destination register. A timing
exception defines a path multiplier N that informs the synthesis tool that a
signal has N clock cycles (N > 1) to propagate from the source to destination
register. The path multiplier expresses some number of cycles of a relative
clock at either the source or destination register. Where a timing exception
is defined for a path, the synthesis tool has more flexibility in meeting the
timing requirements for that path and for the system as a whole.

The generated multicycle path information file does not follow the native
constraint file format of a particular synthesis tool. The file contains the
multicycle path information required by popular synthesis tools. You can
manually convert this information to multicycle path constraints in the
format required by your synthesis tool, or write a script or tool to perform
the conversion. The next section describes the format of a multicycle path
constraint file in detail.

Format and Content of a Multicycle Path Information
File
The following listing shows a simple multicycle path information file.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Constraints Report

% Module: Sbs

% Model: mSbs.mdl

%

% File Name: hdlsrc/Sbs_constraints.txt

% Created: 2009-04-10 09:50:10

% Generated by MATLAB 7.9 and HDL Coder 1.6

%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Multicycle Paths

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

FROM : Sbs.boolireg; TO : Sbs.booloreg; PATH_MULT : 2; RELATIVE_CLK : source,

Sbs.clk;

FROM : Sbs.boolireg_v<0>; TO : Sbs.booloreg_v<0>; PATH_MULT : 2;

RELATIVE_CLK : source, Sbs.clk;

FROM : Sbs.doubireg; TO : Sbs.douboreg; PATH_MULT : 2; RELATIVE_CLK : source,

Sbs.clk;

FROM : Sbs.doubireg_v<0>; TO : Sbs.douboreg_v<0>; PATH_MULT : 2;

RELATIVE_CLK : source, Sbs.clk;

FROM : Sbs.intireg(7:0); TO : Sbs.intoreg(7:0); PATH_MULT : 2;

RELATIVE_CLK : source, Sbs.clk;

FROM : Sbs.intireg_v<0>(7:0);TO : Sbs.intoreg_v<0>(7:0);PATH_MULT : 2

RELATIVE_CLK : source,Sbs.clk;

The first section of the file is a header that identifies the source model and
gives other information about how the coder generated the file. this section
terminates with the following comment lines:

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Multicycle Paths

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

Note For a single-rate model or a model without multicycle paths, the coder
generates only the header section of the file.

The main body of the file follows. This section contains a flat table, each row
of which defines a multicycle path constraint.

Each constraint consists of four fields. The format of each field is one of the
following:

• KEYWORD : field;

• KEYWORD : subfield1,... subfield_N;
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The keyword identifies the type of information contained in the field. The
keyword string in each field terminates with a space followed by a colon.

The delimiter between fields is the semicolon. Within a field, the delimiter
between subfields is the comma.

The following table defines the fields of a multicycle path constraint, in
left-to-right order.
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Keyword : field (or
subfields)

Field Description

FROM : src_reg_path; The source (or FROM) register of a multicycle path in the
system. The value of src_reg_path is the HDL path of the
source register’s output signal. See also “Register Path Syntax
for FROM : and TO : Fields” on page 12-21 .

TO : dst_reg_path; The destination (or TO) register of a multicycle path in the
system. The FROM register drives the TO register in the
HDL code. The value of dst_reg_path is the HDL path of the
destination register’s output signal. See also “Register Path
Syntax for FROM : and TO : Fields” on page 12-21.

PATH_MULT : N; The path multiplier defines the number of clock cycles that a
signal has to propagate from the source to destination register.
The RELATIVE_CLK field describes the clock associated with the
path multiplier (the relative clock for the path).

The path multiplier value N indicates that the signal has N
clock cycles of its relative clock to propagate from source to
destination register.

The coder does not report register-to-register paths where N =
1, because this is the default path multiplier.

RELATIVE_CLK : relclock,
sysclock;

The RELATIVE_CLK field contains two comma-delimited
subfields. Each subfield expresses the location of the relative
clock in a different form, for the use of different synthesis tools.
The subfields are:

• relclock: Since the coder currently generates only
single-clock systems, this subfield takes the value source.
In a multi-clock system, the relative clock associated with
a multicycle path could be either the source or destination
register of the path, and this subfield could take on either of
the values source or destination. This usage is reserved
for future release of the coder.

• sysclock: This subfield is intended for use with synthesis
tools that require the actual propagation time for a multicycle
path. sysclock provides the path to the system’s top-level
clock (e.g., Sbs.clk) You can use the period of this clock
and the path multiplier to calculate the propagation time
for a given path.
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Register Path Syntax for FROM : and TO : Fields
The FROM : and TO: fields of a multipath constraint provide the path to a
source or destination register and information about the signal data type,
size, and other characteristics.

Fixed Point Signals. For fixed point signals, the register path has the form

reg_path<ps> (hb:lb)

where:

• reg_path is the HDL hierarchical path of the signal. The delimiter between
hierarchical levels is the period, for example: Sbs.u_H1.initreg.

• <ps>: Part select (zero-origin integer index) for vector signals. Angle
brackets <> delimit the part select field

• (hb:lb): Bit select field, indicated from high-order bit to low-order bit.
The signal width (hb:lb) is the same as the defined width of the signal in
the HDL code. This representation does not necessarily imply that the bits
of the FROM : register are connected to the corresponding bits of the TO:
register. The actual bit-to-bit connections are determined during synthesis.

Boolean and Double Signals. For boolean and double signals, the register
path has the form

reg_path<ps>

where:

• reg_path is the HDL hierarchical path of the signal. The delimiter between
hierarchical levels is the period (.), for example: Sbs.u_H1.initreg.

• <ps>: Part select (zero-origin integer index) for vector signals. Angle
brackets <> delimit the part select field

For boolean and double signals, no bit select field is present.

Note The format does not distinguish between boolean and double signals.
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Examples. The following table gives several examples of register-to-register
paths as represented in a multicycle path information file.

Path Description

FROM : Sbs.intireg(7:0); TO :
Sbs.intoreg(7:0);

Both signals are fixed point and eight bits wide.

FROM : Sbs.intireg; TO : Sbs.intoreg; Both signals are either boolean or double.

FROM : Sbs.intireg<0>(7:0); TO :
Sbs.intoreg<1>(7:0);

The FROM signal is the first element of a vector.
The TO signal is the second element of a vector.
Both signals are fixed point and eight bits wide.

FROM : Sbs.u_H1.intireg(7:0); TO :
Sbs.intoreg(7:0);

The signal intireg is defined in the module H1,
and H1 is inside the module Sbs. u_H1 is the
instance name of H1 in Sbs. Both signals are
fixed point and eight bits wide.

Ordering of Multicycle Path Constraints
For a given model or subsystem, the ordering of multicycle path constraints
within a multicycle path information file may vary depending on whether the
target language is VHDL or Verilog, and on other factors. The ordering of
constraints may also change in future versions of the coder. When you design
scripts or other tools that process multicycle path information file, do not
build in any assumptions about the ordering of multicycle path constraints
within a file.

Clock Definitions
When you use multiple clock mode, the multicycle path information file also
contains a "Clock Definitions" section, as shown in the following listing. This
section is located after the header and before the "Multicycle Paths" section.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Clock Definitions
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
CLOCK: Sbs.clk PERIOD: 0.05
CLOCK: Sbs.clk_1_2 BASE_CLOCK: Sbs.clk MULTIPLIER: 2 PERIOD: 0.1

The following table defines the fields for the clock definitions.

12-22



Generate Multicycle Path Information Files

Keyword : field (or
subfields)

Field Description

CLOCK: clock_name Each clock in the design has a CLOCK
definition line.

PERIOD: float_value The Simulink rate (floating point value)
associated with this CLOCK.

BASE_CLOCK:
base_clock_name

Names the master clock. This field does not
appear on the master clock.

MULTIPLIER: int_value Gives the ratio of the period of this clock to
the master clock. This field does not appear
on the master clock.

File Naming and Location Conventions
The file name for the multicycle path information file derives from the name
of the DUT and the postfix string '_constraints', as follows:

DUTname_constraints.txt

For example, if the DUT name is symmetric_fir, the name of the multicycle
path information file is symmetric_fir_constraints.txt.

The coder writes the multicycle path information file to the target .

Generating Multicycle Path Information Files Using
the GUI
By default, the coder does not generate multicycle path information files.
To enable generation of multicycle path information files, select Generate
multicycle path information in the HDL Code Generation > EDA Tool
Scripts pane of the Configuration Parameters dialog box.

When you select Generate multicycle path information, the coder
generates a multicycle path information file each time you initiate code
generation.
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Generating Multicycle Path Information Files Using
the Command Line
To generate a multicycle path information file from the command line, pass
in the property/value pair 'MulticyclePathInfo','on' to makehdl, as in
the following example.

>> dut = 'hdlfirtdecim_multicycle/Subsystem';

>> makehdl(dut, 'MulticyclePathInfo','on');

### Generating HDL for 'hdlfirtdecim_multicycle/Subsystem'

### Starting HDL Check.

### HDL Check Complete with 0 errors, 0 warnings and 1 message.

### MESSAGE: For the block 'hdlfirtdecim_multicycle/Subsystem/downsamp0'

The initial condition may not be used when the sample offset is 0.

### Begin VHDL Code Generation

### Working on Subsystem_tc as hdlsrc\Subsystem_tc.vhd

### Working on hdlfirtdecim_multicycle/Subsystem as hdlsrc\Subsystem.vhd

### Generating package file hdlsrc\Subsystem_pkg.vhd

### Finishing multicycle path connectivity analysis.

### Writing multicycle path information in hdlsrc\Subsystem_constraints.txt

### HDL Code Generation Complete.

Limitations

Unsupported Blocks and Implementations
The following table lists block implementations (and associated Simulink
blocks) that will not contribute to multicycle path constraints information.

Implementation Block(s)

SumCascadeHDLEmission Add, Subtract, Sum, Sum of
Elements

ProductCascadeHDLEmission Product, Product of Elements

MinMaxCascadeHDLEmission MinMax, Maximum, Minimum

ModelReferenceHDLInstantiation Model

SubsystemBlackBoxHDLInstiation Subsystem
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Implementation Block(s)

RamBlockDualHDLInstantiation Dual Port RAM

RamBlockSimpDualHDLInstantiation Simple Dual Port RAM

RamBlockSingleHDLInstantiation Single Port RAM

Limitations on MATLAB Function Blocks and Stateflow Charts

Loop-Carried Dependencies. The coder does not generate constraints for
MATLAB Function blocks or Stateflow charts that contain a for loop with
a loop-carried dependency.

Indexing Vector or Matrix Variables. In order to generate constraints
for a vector or matrix index expression, the index expression must be one
of the following:

• A constant

• A for loop induction variable

For example, in the following example of code for a MATLAB Function block,
the index expression reg(i) does not generate constraints.

,

function y = fcn(u)
%#codegen

N=length(u);
persistent reg;
if isempty(reg)

reg = zeros(1,N);
end

y = reg;

for i = 1:N-1
reg(i) = u(i) + reg(i+1);

end
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reg(N) = u(N);

File Generation Time

Tip Generation of constraint files for large models can be slow.

Example of Generating a Multicycle Path Information
File
The “Getting Started with Multicycle Path Constraint Generation” example
illustrates generation of a multicycle path information file using a model of a
decimating filter. To open the example, enter the following at the command
line:

showdemo hdlmulticyclepath
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HDL Properties for Controlling Multirate Code Generation

In this section...

“Overview” on page 12-27

“HoldInputDataBetweenSamples” on page 12-27

“OptimizeTimingController” on page 12-27

Overview
This section summarizes coder properties that provide additional control over
multirate code generation.

HoldInputDataBetweenSamples
This property determines how long (in terms of base rate clock cycles) data
values for subrate signals are held in a valid state.

When 'on' (the default), data values for subrate signals are held in a valid
state across each subrate sample period.

When 'off', data values for subrate signals are held in a valid state for only
one base-rate clock cycle. See HoldInputDataBetweenSamples for details.

OptimizeTimingController
This property specifies whether the timing controller generates the required
rates using multiple counters per rate (the default) or a single counter. The
use of multiple counters optimizes generated code for speed and area. See
OptimizeTimingController for details.
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Open the hdldemolib Library
The hdldemolib library provides HDL-specific implementations supporting
simulation and code generation for:

• Single and dual-port RAMs

• Counter with single-shot and free-running modes

• Minimum resource FFT

• Operations on bits and bit fields

• FIFO (Queue)

These blocks are implemented as subsystems. The blocks provide HDL-specific
functionality that is not currently supported by other Simulink blocks.

To open the hdldemolib library, type the following command at the MATLAB
prompt:

hdldemolib
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RAM Blocks

In this section...

“Overview of RAM Blocks” on page 13-3

“Dual Port RAM Block” on page 13-5

“Simple Dual Port RAM Block” on page 13-7

“Single Port RAM Block” on page 13-8

“Code Generation for RAM Blocks” on page 13-11

“Limitations for RAM Blocks” on page 13-12

Overview of RAM Blocks
The RAM blocks let you:

• Simulate the behavior of a single-port or dual-port RAM in your model.

• Generate an interface to the inputs and outputs of the RAM in HDL code.

• Generate RTL code that can be inferred as a RAM by most synthesis tools,
for most FPGAs.

The RAM blocks are grouped together in the hdldemolib library, as shown in
the following figure. The library provides three type of RAM blocks:

• Dual Port RAM

• Simple Dual Port RAM

• Single Port RAM
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To open the library, type the following command at the MATLAB prompt:

hdldemolib

Then, drag the desired RAM block from the hdldemolib library to your model,
and set the block parameters and connect signals following the guidelines in
the following sections.
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Dual Port RAM Block

Dual Port RAM Block Ports and Parameters
The following figure shows the Dual Port RAM block.

The block has the following input and output ports:

• wr_din : Data input. Only scalar signals can be connected to this port.
The data type of the input signal can be fixed point, integer, or complex,
and can be of any width. The port inherits the width and data type of its
input signal.

• wr_addr, rd_addr: Write and read address ports, respectively.

To set the width of the address ports, enter the desired width value
(minimum width 2 bits, maximum width 32 bits ) into the Address port
width field of the block GUI, as shown in the following figure. The default
width is 8 bits.

The data type of signals connected to these ports must be unsigned integer
(uintN) or unsigned fixed point (ufixN) with a fraction length of 0.

Vector signals are not accepted at the address ports.
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• wr_en: Write enable. This port must be connected to a Boolean signal.

• wr_dout, rd_dout: Output ports with read data for addresses wr_addr
and rd_addr, respectively.

Tip If data output at the write port is not required, you can achieve better
RAM inference with synthesis tools by using the Simple Dual Port RAM block
rather than the Dual Port RAM block.

Read-During-Write Behavior
During a write, new data appears at the output of the write port (wr_dout)
of the Dual Port RAM block. If a read operation is performed at the same
address at the read port, old data is read at the output (rd_dout).
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Simple Dual Port RAM Block

Simple Dual Port RAM Block Ports and Parameters
The following figure shows the Simple Dual Port RAM block.

This block is similar to the Dual Port RAM. It differs from Dual Port RAM in
its read-during-write behavior, and it does not have the data output at the
write port (wr_dout).

The block has the following input and output ports:

• wr_din : Data input. Only scalar signals can be connected to this port.
The data type of the input signal can be fixed point, integer, or complex,
and can be of any width. The port inherits the width and data type of its
input signal.

• wr_addr, rd_addr: Write and read address ports, respectively.

To set the width of the address ports, enter the desired width value
(minimum width 2 bits, maximum width 32 bits) into the Address port
width field of the block GUI, as shown in the following figure. The default
width is 8 bits.

The data type of signals connected to these ports must be unsigned integer
(uintN) or unsigned fixed point (ufixN) with a fraction length of 0.
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Vector signals are not accepted at the address ports.

• wr_en: Write enable. This port must be connected to a Boolean signal.

• rd_dout: Output port with read data for addresses wr_addr and rd_addr,
respectively.

Read-During-Write Behavior
During a write operation, if a read operation is performed at the same address
at the read port, old data is read at the output.

Single Port RAM Block

Single Port RAM Block Ports and Parameters
The following figure shows the Single Port RAM block.
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The block has the following input and output ports:

• din : Data input. Only scalar signals can be connected to this port. The
data type of the input signal can be fixed point, integer, or complex, and
can be of any width. The port inherits the width and data type of its input
signal.

• addr: Write address port.

To set the width of the address ports, enter the desired width value
(minimum width 2 bits, maximum width 32 bits) into the Address port
width field of the block GUI, as shown in the following figure. The default
width is 8 bits.

The data type of signals connected to these ports must be unsigned integer
(uintN) or unsigned fixed point (ufixN) with a fraction length of 0.

Vector signals are not accepted at the address ports.
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• we: Write enable. This port must be connected to a Boolean signal.

• dout: Output port with data for address addr.

Read-During-Write Behavior
The Output data during write dropdown menu provides options that
control how the RAM handles output/read data. These options are:

• New data (default): During a write, new data appears at the output port
(dout).

• Old data: During a write, old data appears at the output port (dout).
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Note Depending on your synthesis tool and target device, the setting of
Output data during write may affect the result of RAM inference. See
“Limitations for RAM Blocks” on page 13-12 for further information on
read-during-write behavior in hardware.

Code Generation for RAM Blocks
Code generation for a RAM block creates a separate file, blockname.ext,
where blockname is derived from the name of the RAM block, and ext is the
target language filename extension.

Code generated for RAM blocks has:

• A latency of 1 clock cycle for read data output.

• No reset signal, since some synthesis tools do not infer a RAM from HDL
code if it includes a reset.

Most synthesis tools infer a RAM from the generated HDL code with default
settings. However, your synthesis tool may not map the generated code to
RAM for the following reasons:

• Small RAM size: your synthesis tool may use registers to implement a
small RAM for better performance.

• A clock enable signal is present. You can suppress generation of a clock
enable signal in RAM blocks, as described in “Implement RAMs With or
Without Clock Enable” on page 13-11.

Please note that code generated to initialize a RAM is intended for simulation
only, and may be ignored by synthesis tools.

Implement RAMs With or Without Clock Enable
The RAMArchitecture property enables or suppresses generation of clock
enable logic for all RAM blocks in a subsystem. You can set RAMArchitecture
to the following values:

• 'WithClockEnable' (default): Generates RAMs using HDL templates that
include a clock enable signal, and an empty RAM wrapper.
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• 'WithoutClockEnable': Generates RAMs without clock enables, and a
RAM wrapper that implements the clock enable logic.

Some synthesis tools may not infer RAMs with a clock enable. Set
GlobalRAMArchitecture to 'WithoutClockEnable' if your synthesis tool
does not support RAM structures with a clock enable, and cannot map your
generated HDL code to FPGA RAM resources. To learn how to generate
RAMs without clock enables for your design, see the Getting Started with
RAM and ROM example. To open the example, type the following command
at the MATLAB prompt:

hdlcoderramrom

Limitations for RAM Blocks
The following limitations apply to the use of RAM blocks in HDL code
generation:

• If you use RAM blocks to perform concurrent read and write operations,
you should manually verify the read-during-write behavior in hardware.
The read-during-write behavior of the RAM blocks in Simulink matches
that of the generated behavioral HDL code. However, a synthesis tool
may not follow the same behavior during RAM inferring, causing the
read-during-write behavior in hardware to differ from the behavior of the
Simulink model or generated HDL code. Actual read-during-write behavior
in hardware depends on how synthesis tools infer RAM from generated
HDL code, and on the hardware architecture of the target device.
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Generate RAM Without Clock Enable Ports
The RAM blocks in the hdldemolib library implement RAM structures using
HDL templates that include a clock enable signal.

However, some synthesis tools do not support RAM inference with a clock
enable. As an alternative, the coder provides a generic style of HDL templates
that do not use a clock enable signal for the RAM structures. The generic RAM
template implements clock enable with logic in a wrapper around the RAM.

You may want to use the generic RAM style if your synthesis tool does not
support RAM structures with a clock enable, and cannot map generated HDL
code to FPGA RAM resources. To learn how to use generic style RAM for your
design, see the Getting Started with RAM and ROM example. To open the
example, type the following command at the MATLAB prompt:

hdlcoderramrom
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Build a ROM Block with Simulink Blocks
HDL Coder does not provide a ROM block, but you can easily build one using
basic Simulink blocks. The Getting Started with RAM and ROM example
includes a ROM built using a 1-D Lookup Table block and a Unit Delay block.
To open the example, type the following command at the MATLAB prompt:

hdlcoderramrom
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HDL Counter

In this section...

“Overview” on page 13-15

“Counter Modes” on page 13-15

“Control Ports” on page 13-17

“Defining the Counter Data Type and Size” on page 13-20

“HDL Implementation and Implementation Parameters” on page 13-21

“Parameters and Dialog Box” on page 13-22

Overview

The HDL Counter block implements a free-running or count-limited hardware
counter that supports signed and unsigned integer and fixed-point data types.

The counter emits its value for the current sample time from the count
output. By default, the counter does not have input ports. Optionally, you can
add control ports that let you enable, disable, load, or reset the counter, or set
the direction (positive or negative) of the counter.

Counter Modes
The HDL Counter supports two operation modes, selected from the Counter
type dropdown menu.
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Free Running Mode (default)
The counter is initialized to the value defined by the Initial value parameter
upon assertion of a reset signal. The reset signal can be either the model’s
global reset, or a reset received through an optional Local reset port that
you can define on the HDL Counter block.

On each sample time, the value defined by the Step value parameter is
added to the counter, and the counter emits its current value at the count
output. When the counter value overflows or underflows the counter’s word
size, the counter wraps around and continues the counting sequence until
reset is asserted or the model stops running.

By default, the positive or negative direction of the count is determined by
the sign of the Step value. Optionally, you can define a Count direction
control port on the HDL Counter block.

Free Running Mode Examples. For a 4-bit unsigned integer counter with
an Initial value of 0 and a Step value of 5, the counter output sequence is

0, 5, 10, 15, 4, 9,14,3,...

For a 4-bit signed integer counter with an Initial value of 0 and a Step
value of -2, the counter output sequence is

0,-2,-4,-6,-8,6,4,2,0,-2,-4,...

Count Limited Mode
The counter is initialized to the value defined by the Initial value parameter
upon assertion of a reset signal. The reset signal can be either the model’s
global reset, or a reset received through an optional Local reset port that
you can define on the HDL Counter block.

On each sample time, the value defined by the Step value parameter is added
to the counter, and the current value is tested for equality with the value
defined by the Count to value parameter. If the current value equals the
Count to value, the counter is reloaded with the initial value. The counter
then emits its current value at the count output.
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If the counter value overflows or underflows the counter’s word size, the
counter wraps around and continues the counting sequence. The sequence
continues until reset is asserted or the model stops running.

The condition for resetting the counter is exact equality. For some
combinations of Initial value, Step value, and Count to value, the counter
value may not reach the Count to value, or the counter may overflow and
iterate through the counter range some number of times before reaching
the Count to value.

By default, the positive or negative direction of the count is determined by
the sign of the Step value. Optionally, you can define a Count direction
control port on the HDL Counter block.

Count Limited Mode Examples. For an 8-bit signed integer counter with
an Initial value of 0, a Step value of 2, and a Count to value of 8, the
counter output sequence is

0 2 4 6 8 0 ...

For a 3-bit unsigned integer counter with an Initial value of 0, a Step value
of 3, and a Count to value of 7, the counter output sequence is

0 3 6 1 4 7 0 3 6 1 4 7 ...

For a 3-bit unsigned integer counter with an Initial value of 0, a Step value
of 2, and a Count to value of 7, the counter output sequence does not reach
the Count to value:

0 2 4 6 0 2 4 6 ...

Control Ports
By default, the HDL Counter does not have inputs. Control ports are optional
inputs that you can add to the block to:

• Reset the counter independently from the global reset logic.

• Load the counter with a value.

• Enable or disable the counter.

• Set the positive or negative direction of the counter.
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The following figure shows the HDL Counter block configured with all
available control ports.

The following characteristics apply to control ports:

• Control ports are synchronous.

• All control ports except the load value input have Boolean data type.

• Control ports must have the same sample time.

• If control ports exist on the block, the HDL Counter block inherits its
sample time from the ports, and the Sample time parameter on the block
dialog box is disabled.

• Signals at control ports are active-high.

Creating Control Ports for Loading and Resetting the Counter
By default, the counter is loaded (or reloaded) with the defined Initial value
at the following times:

• When the model’s global reset is asserted

• (In Count limited mode only) When the counter value equals the Count
to value
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You can further control reset and load behavior with signals connected to
control ports. You can add these control ports to the block via the following
options:

Local reset port: Select this option to create a reset input port on the block.
The local reset port is labeled rst. The rst port should be connected to a
Boolean signal. When this signal is set to 1, the counter resets to its initial
value.

Load ports: When you select this option, two input ports, labeled load and
load_val, are created on the block. The load port should be connected to a
Boolean signal. When this signal is set to 1, the counter is loaded with the
value at the load_val input. The load value must have the same data type as
the counter.

Enabling or Disabling the Counter
When you select the Count enable port option, a control port labeled enb is
created on the block. The enb port should be connected to a Boolean signal.
When this signal is set to 0, the counter is disabled and the current counter
value is held at the output. When the enb signal is set to 1, the counter
resumes operation.

Controlling the Counter Direction
By default, the negative or positive direction of the counter is determined
by the sign of the Step value. When you select the Count direction port
option, a control port labeled dir is created on the block. The dir port should
be connected to a Boolean signal. The dir signal determines the direction of
the counter as follows:

• When the dir signal is set to 1, the step value is added to the current
counter value to compute the next value.

• When the dir signal is set to 0, the step value is subtracted from the
current counter value to compute the next value.

The following table summarizes the effect of the Count direction port.
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Count Direction Signal
Value

Step Value Sign Actual Count
Direction

1 + (Positive) Up

1 - (Negative) Down

0 + (Positive) Down

0 - (Negative) Up

Priority of Control Signals
The following table defines the priority of control signals, and shows how the
counter value is set in relation to the control signals.

rst load enb dir Next Counter Value

1 – – – initial value

0 1 – – load_val value

0 0 0 – current value

0 0 1 1 current value + step value

0 0 1 0 current value - step value

Defining the Counter Data Type and Size
The HDL Counter block supports signed and unsigned integer and fixed-point
data types. Use the following parameters to set the data type:

Output data type: Select Signed or Unsigned. The default is Unsigned.

Word length: Enter the desired number of bits (including the sign bit) for
the counter.

Default: 8

Minimum: 1 if Output data type is Unsigned, 2 if Output data type is
Signed

Maximum: 125
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Fraction length: To define an integer counter, accept the default Fraction
length of 0. To define a fixed-point counter, enter the number of bits to the
right of the binary point.

HDL Implementation and Implementation Parameters
Implementation: default

Implementation Parameters: InputPipeline, OutputPipeline
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Parameters and Dialog Box

Counter type

Default: Free running

This dropdown menu selects the operation mode of the counter (see “Counter
Modes” on page 13-15). The operation modes are:
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• Free running

• Count limited

When Count limited is selected, the Count to value field is enabled.

Initial value

Default: 0

By default, the counter is loaded (or reloaded) with the defined Initial value
at the following times:

• When the model’s global reset is asserted.

• (In Count limited mode only) When the counter value equals the Count
to value. See also “Count Limited Mode” on page 13-16.

Step value

Default: 1

The Step value is an increment that is added to the counter on each sample
time. By default (i.e., in the absence of a count direction control signal) the
sign of the step value determines the count direction (see also “Controlling the
Counter Direction” on page 13-19).

Set Step value to a nonzero value that can be represented in the counter’s
data type precision without rounding. The magnitude (absolute value) of
the step value must be a number that can be represented with the counter’s
data type.

For a signed N-bit integer counter:

• The range of counter values is -(2N-1)..(2N-1 -1).

• The range of legal step values is -(2N-1-1)..(2N-1 -1) (zero is excluded).

For example, for a 4-bit signed integer counter, the counter range is [-8..7],
but the ranges of legal step values are [-7..-1] and [1..7].
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Count to value

Default: 100

The Count to value field is enabled when the Count limited counter mode
is selected. When the counter value is equal to the Count to value, the
counter resets to the Initial value and continues counting. The condition for
resetting the counter is exact equality. For some combinations of Initial
value, Step value, and Count to value, the counter value may not reach
the Count to value, or the counter may overflow and iterate through the
counter range some number of times before reaching the Count to value (see
“Count Limited Mode” on page 13-16).

Set Count to value to a value that is not equal to the Initial value.

Local reset port

Default: cleared

Select this option to create a reset input port on the block. Only Boolean
signals should be connected to this port. The port is labeled rst. See “Creating
Control Ports for Loading and Resetting the Counter” on page 13-18.

Load ports

Default: cleared

Select this option to create load and load value input ports on the block. The
ports are labeled load and load_val, respectively. The signal applied to the
load port must be Boolean. The signal applied to the load_val port must
have the same data type as the counter. See also “Creating Control Ports for
Loading and Resetting the Counter” on page 13-18.

Count enable port

Default: cleared

Select this option to create a count enable input port on the block. Only
Boolean signals should be connected to this port. The port is labeled enb. See
also “Enabling or Disabling the Counter” on page 13-19.
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Count direction port

Default: cleared

Select this option to create a count direction input port on the block. Only
Boolean signals should be connected to this port. The port is labeled dir. See
also “Controlling the Counter Direction” on page 13-19.

Counter output data is:

Default: Unsigned

This dropdown menu selects whether the counter output is signed or unsigned.

Word length

Default: 8

Word length is a positive integer that defines the size, in bits, of the counter.

Minimum: 1 if Output data type is Unsigned, 2 if Output data type is
Signed

Maximum: 125

Fraction length

Default: 0

To define an integer counter, accept the default Fraction length of 0. To
define a fixed-point counter, enter the number of bits to the right of the
binary point.

Default: 0

Sample time

Default: 1
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If the HDL Counter block does not have input ports, the Sample time field
is enabled, and an explicit sample time must be defined. Enter the desired
sample time, or accept the default.

If the HDL Counter block has input ports, this field is disabled, and the block
sample time is inherited from the input signals. All input signals must have
the same sample time setting. (See also “Control Ports” on page 13-17.)
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HDL FFT

In this section...

“Overview” on page 13-27

“Block Inputs and Outputs” on page 13-27

“HDL Implementation and Implementation Parameters” on page 13-30

“Parameters and Dialog Box” on page 13-30

Overview
The HDL FFT block implements a minimum resource FFT architecture.

In the current release, the HDL FFT block supports the Radix-2 with
decimation-in-time (DIT) algorithm for FFT computation. See the FFT
block reference section in the DSP System Toolbox documentation for more
information about this algorithm.

The results returned by the HDL FFT block are bit-for-bit compatible with
results returned by the DSP System Toolbox FFT block.

The operation of the HDL FFT block differs from the DSP System Toolbox FFT
block, due to the requirements of hardware realization. The HDL FFT block:

• Requires serial input

• Generates serial output

• Operates in burst I/O mode

The HDL FFT block provides handshaking signals to support these features
(see “Block Inputs and Outputs” on page 13-27).

Block Inputs and Outputs
As shown in the following figure, the HDL FFT block has two input ports and
three output ports. Two of these ports are for data input and output signals.
The other ports are for control signals.
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The input ports are:

• din: The input data signal. A complex signal is required.

• start: Boolean control signal. When this signal is asserted true (1), the
HDL FFT block initiates processing of a data frame.

The output ports are:

• dout: Data output signal. The Radix-2 with DIT algorithm produces output
with linear ordering.

• dvalid: Boolean control signal. The HDL FFT block asserts this signal
true (1) when a burst of valid output data is available at the dout port.

• ready: Boolean control signal. The HDL FFT block asserts this signal true
(1) to indicate that it is ready to process a new frame.

Configuring Control Signals
For efficient hardware deployment of the HDL FFT block, the timing of the
block’s input and output data streams must be considered carefully. The
following figure shows the timing relationships between the system clock and
the start, ready, and dvalid signals.
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When ready is asserted, the start signal (active high) triggers the FFT
block. The high cycle period of the start signal does not affect the behavior
of the block.

One clock cycle after the start trigger, the block begins to load data and the
ready signal is deasserted. During the interval when the block is loading,
processing, and outputting data, ready is low and the start signal is ignored.

The dvalid signal is asserted high for N clock cycles (where N is the FFT
length) after processing is complete. ready is asserted again after the N-point
FFT outputs are sent out.

The expression Tcycle denotes the total number of clock cycles required by the
HDL FFT block to complete an FFT of length N. Tcycle is defined as follows:

• Where N >8

Tcycle = 3N/2-2 + log2(N)*(N/2+3);

• Where N = 8

Tcycle = 3N/2-1 +log2(N)*(N/2+3);
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Given Tcycle, you can then define the period between assertions of the HDL
FFT start signal in a way that is suitable to your application. In the “Using
the Minimum Resource HDL FFT” example, this period is computed and
assigned to the variable startLen, as follows:

if (N<=8)
startLen = (ceil(Tcycle/N)+1)*N;
else
startLen = ceil(Tcycle/N)*N;
end

In the example model, startLen determines the period of a Pulse Generator
that drives the HDL FFT block’s start input. These values are computed
in the model’s initialization function (InitFcn), which is defined in the
Callbacks pane of the Simulink Model Explorer.

The HDL FFT block asserts and deasserts the ready and dvalid signals
automatically. These signals are routed to the model components that write
to and read from the HDL FFT block.

HDL Implementation and Implementation Parameters
Implementation: default

Implementation Parameters: InputPipeline, OutputPipeline

Parameters and Dialog Box
The following figure shows the HDL FFT block dialog box, with parameters at
their default settings.
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FFT Length

Default: 8

The FFT length must be a power of 2, in the range 23 .. 216.

Rounding mode

Default: Floor

The HDL FFT block supports all rounding modes of the DSP System Toolbox
FFT block. See also the FFT block reference section in the DSP System
Toolbox documentation.

Overflow mode

Default: Saturate

The HDL FFT block supports all overflow modes of the DSP System Toolbox
FFT block. See also the FFT block reference section in the DSP System
Toolbox documentation.

Sine table

Default: Same word length as input

Choose how you specify the word length of the values of the sine table. The
fraction length of the sine table values is equal to the word length minus one.

• When you select Same word length as input, the word length of the sine
table values match that of the input to the block.

• When you select Specify word length, you can enter the word length of
the sine table values, in bits, in the Sine table word length field. The
sine table values do not obey the Rounding mode and Overflow mode
parameters; they always saturate and round to Nearest.

Product output

Default: Same as input
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Use this parameter to specify how you want to designate the product output
word and fraction lengths:

• When you select Same as input, these characteristics match those of the
input to the block.

• When you select Binary point scaling, you can enter the word length
and the fraction length of the product output, in bits, in the Product word
length and Product fraction length fields.

Accumulator

Default: Same as input

Use this parameter to specify how you want to designate the accumulator
word and fraction lengths:

When you select Same as product output, these characteristics match those
of the product output.

• When you select Same as input, these characteristics match those of the
input to the block.

• When you select Binary point scaling, you can enter the word length
and the fraction length of the accumulator, in bits, in the Accumulator
word length and Accumulator fraction length fields.

Output

Default: Same as input

Choose how you specify the output word length and fraction length:

• When you select Same as input, these characteristics match those of the
input to the block.

• When you select Binary point scaling, you can enter the word length
and the fraction length of the output, in bits, in the Output word length
and Output fraction length fields.
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Note The HDL FFT block skips the divide-by-two operation on butterfly
outputs for fixed-point signals.
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Signal Processing with the HDL FFT Block
To get started with the HDL FFT block, run the “Using the Minimum
Resource HDL FFT” example, which is located in the HDL Coder/Signal
Processing example library.

The example illustrates the use of the HDL FFT block in simulation. The
model includes buffering and control logic that handles serial input and
output. In the example, a complex source signal is stored as a series of
samples in a FIFO. Samples from the FIFO are processed serially by the HDL
FFT block, which emits a stream of scalar FFT data.

For comparison, the same source signal is also processed by the frame-based
DSP System Toolbox FFT block. The output frames from the DSP System
Toolbox FFT block are buffered into a FIFO and compared to the output of the
HDL FFT block. Examination of the results shows the outputs to be identical.
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HDL FIFO

In this section...

“Overview” on page 13-36

“Block Inputs and Outputs” on page 13-36

“HDL Implementation and Implementation Parameters” on page 13-37

“Parameters and Dialog Box” on page 13-37

Overview
The HDL FIFO block stores a sequence of input samples in a first in, first out
(FIFO) register. The HDL FIFO block closely resembles the Queue block
of the DSP System Toolbox, but with HDL-related enhancements such as
multirate support.

Block Inputs and Outputs
The following figure shows the HDL FIFO block with input and output ports
enabled.

The input ports are:

• In: The data input signal.

• Push: Control signal. When this port receives a value of 1, the block pushes
the input at the In port onto the end of the FIFO register.
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• Pop: Control signal. When this port receives a value of 1, the block pops the
first element off the FIFO register and holds the Out port at that value

The output ports are:

• Out: The data output signal.

• Empty: The block asserts this signal true (1) when the FIFO register is
empty. Display of this port is optional.

• Full: The block asserts this signal true (1) to indicate that the FIFO
register is full. Display of this port is optional.

• Num: The current number of data values in the FIFO register. Display of
this port is optional.

In the event that two or more of the control input ports are triggered at the
same time step, the operations execute in the following order:

1 Pop

2 Push

HDL Implementation and Implementation Parameters
Implementation: default

Implementation Parameters: InputPipeline, OutputPipeline

Parameters and Dialog Box
The following figure shows the HDL FIFO block dialog box, with parameters
at their default settings.
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• Register size: Specify the number of entries that the FIFO register can
hold.

Default: 10

• The ratio of output sample time to input sample time: Inputs (In,
Push) and outputs (Out, Pop) can run at different sample times. Enter the
ratio of output sample time to input sample time. The value must be a
positive integer or 1/N, where N is a positive integer.

For example:
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- If you enter 2, the output sample time is twice the input sample time,
meaning the outputs run slower.

- If you enter 1/2, the output sample time is half the input sample time,
meaning the outputs run faster.

The Full, Empty, and Num signals run at the faster rate.

Default: 1

• Push onto full register: Response (Ignore, Error, or Warning) to a
trigger received at the Push port when the register is full.

Default: Warning

• Pop empty register: Response (Ignore, Error, or Warning) to a trigger
received at the Pop port when the register is empty.

Default: Warning

• Show empty register indicator port (Empty): Enable the Empty
output port, which is high (1) when the FIFO register is empty, and low
(0) otherwise.

• Show full register indicator port (Full): Enable the Full output port,
which is high (1) when the FIFO register is full, and low (0) otherwise.

• Show number of register entries port (Num): Enable the Num output
port, which tracks the number of entries currently on the queue.
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HDL Streaming FFT

In this section...

“Overview” on page 13-40

“HDL Streaming FFT Block Example” on page 13-40

“Block Inputs and Outputs” on page 13-40

“Timing Description” on page 13-41

“HDL Implementation and Implementation Parameters” on page 13-45

“Parameters and Dialog Box” on page 13-45

Overview
The HDL Streaming FFT block supports the Radix-2 with
decimation-in-frequency (DIF) algorithm for FFT computation. See the FFT
block reference section in the DSP System Toolbox documentation for more
information about this algorithm.

The HDL Streaming FFT block returns results identical to results returned
by the Radix-2 DIF algorithm of the DSP System Toolbox FFT block.

HDL Streaming FFT Block Example
To get started with the HDL Streaming FFT block, run the “OFDM
Receiver with 512-Point Streaming I/O FFT” example, which is in the HDL
Coder/Signal Processing example library.

The example implements a simple OFDM transmitter and receiver. The
model compares the results obtained from the DSP System Toolbox FFT block
to results obtained from the HDL Streaming FFT block.

Block Inputs and Outputs
As shown in the following figure, the HDL Streaming FFT block has two
input ports and three output ports. Two of these ports are for data input and
output signals. The other ports are for control signals.
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The block has the following input ports:

• din: The input data signal. The coder requires a complex fixed-point signal.

• start: Boolean control signal. When start asserts true (1), the HDL
Streaming FFT block initiates processing of a data frame.

The block has the following output ports:

• dout: Data output signal.

• dvalid: Boolean control signal. The HDL Streaming FFT block asserts
this signal true (1) when a stream of valid output data is available at the
dout port.

• ready: Boolean control signal. The HDL Streaming FFT block asserts this
signal true (1) to indicate that it is ready to process a new frame.

Timing Description
The HDL Streaming FFT block operates in one of two modes:

• Continuous data streaming mode: In this mode, the HDL Streaming FFT
block expects to receive a continuous stream of data at din. After an initial
delay, the block produces a continuous stream of data at dout.

• Non-continuous data streaming mode: In this mode, the HDL Streaming
FFT block receives non-continuous bursts of streaming data at din. After
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an initial delay, the block produces non-continuous bursts of streaming
data at dout.

The behavior of the control signals determines the timing mode of the block.

Continuous Data Streaming Timing
Assertion of the start signal (active high) triggers processing by the HDL
Streaming FFT block. To initiate continuous data stream processing, assert
the start signal in one of the following ways:

• Hold the start signal high (as shown in Continuous Data Streaming with
Start Signal Held High on page 13-43).

• Pulse the start signal every N clock cycles, where N is the FFT length (as
shown in Continuous Data Streaming With Pulsed Start Signal on page
13-43).

One clock cycle after the start trigger, the block begins to load data at din.
After the first frame of streaming data, the block starts to receive the next
frame of streaming data.

Meanwhile, the block performs the FFT calculation on the incoming data
frames and outputs the results continuously at dout. The HDL Streaming
FFT block asserts and deasserts the ready and dvalid signals automatically.
The block asserts dvalid high whenever the output data stream is valid. The
block asserts ready high to indicate that the block is ready to load a new data
frame. When ready is low, the block ignores the start signal.

The following figures illustrate continuous data streaming. Each data frame
corresponds to a stream of N input data values, where N is the FFT length.
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Continuous Data Streaming with Start Signal Held High

Note The start signal can be a single cycle pulse; it need not be held high
for the entire data frame. When processing for a frame begins, further pulses
on start do not affect processing of that frame. However, a start pulse must
occur at the beginning of each data frame.

Continuous Data Streaming With Pulsed Start Signal

Non-Continuous Data Streaming Timing
In this mode, the HDL Streaming FFT block receives continuous bursts
of streaming data at din. After an initial delay, the block produces
non-continuous bursts of streaming data at dout. Breaks occur between data
frames when the following condition exist:
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• The start signal does not assert every N clock cycles (where N is the FFT
length)

• The start signal is not continuously held high.

Non-continuous data streaming mode allows you more flexibility in
determining the intervals between input data streams.

Initial Delay
The initial delay of the HDL Streaming FFT block is the interval between the
following times:

• The time the block begins to receive the first frame of input data

• The time the block asserts dvalid and produces the first valid output data.

The initial delay represents the time the block uses to load a data frame,
calculate the FFT, and output the beginning of the first output frame. The
following figure illustrates the initial delay.
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If you select the block option Display computed initial delay on mask, the
block icon displays the initial delay. The display represents the delay time as
Z-n, where n is the delay time in samples.

HDL Implementation and Implementation Parameters
Implementation: default

Implementation Parameters: InputPipeline, OutputPipeline

Parameters and Dialog Box
The following figure shows the HDL Streaming FFT block dialog box, with
parameters at their default settings.
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FFT Length

Default: 1024

The FFT length must be a power of 2, in the range 23 to 216.

Rounding mode

Default: Floor

The HDL Streaming FFT block supports all rounding modes of the DSP
System Toolbox FFT block. See also the FFT block reference section in the
DSP System Toolbox documentation.

Overflow mode

Default: Wrap

The HDL Streaming FFT block supports all overflow modes of the DSP
System Toolbox FFT block. See also the FFT block reference section in the
DSP System Toolbox documentation.

Sine table

Default: Same word length as input

Choose how you specify the word length of the values of the sine table. The
fraction length of the sine table values is equal to the word length minus one.

• When you select Same word length as input, the word lengths of the
sine table values match the word lengths of the block inputs.

• When you select Specify word length, you can enter the word length of
the sine table values, in bits, in the Sine table word length field. The
sine table values do not obey the Rounding mode and Overflow mode
parameters. They always saturate and round to Nearest.

Product output

Default: Same as input
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Use this parameter to specify how you want to designate the product output
word and fraction lengths:

• When you select Same as input, these characteristics match the
characteristics of the input to the block.

• Binary point scaling: Enter the word length and the fraction length
of the product output, in bits, in the Product word length and Product
fraction length fields.

Accumulator

Default: Same as input

Use this parameter to specify how you want to designate the accumulator
word and fraction lengths:

When you select Same as product output, these characteristics match the
characteristics of the product output.

• When you select Same as input, these characteristics match the
characteristics of the input to the block.

• Binary point scaling: Enter the word length and the fraction length
of the accumulator, in bits, in the Accumulator word length and
Accumulator fraction length fields.

Output

Default: Same as input

Choose how you specify the output word length and fraction length:

• Same as input: these characteristics match the characteristics of the
input to the block.

• Binary point scaling: lets you enter the word length and fraction length
of the output, in bits, in the Output word length and Output fraction
length fields.

Output in bit-reversed order
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Default: Off

• On: The output data stream is in bit-reversed order.

• Off: The output data stream is in natural order.

For more information about the effects of bit reversal, see “Linear and
Bit-Reversed Output Order” in the DSP System Toolbox documentation.

Display computed initial delay on mask

Default: Off

• On: The block icon displays the initial delay as Z-n, where n is the delay
time in samples.

• Off: The block icon does not display the initial delay.

Note Sine table, Product output, Accumulator, and Output do not
support:

• Inherit via internal rule

• Slope and bias scaling
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Bitwise Operators

In this section...

“Overview of Bitwise Operator Blocks” on page 13-50

“Bit Concat” on page 13-52

“Bit Reduce” on page 13-55

“Bit Rotate” on page 13-57

“Bit Shift” on page 13-59

“Bit Slice” on page 13-61

Overview of Bitwise Operator Blocks
The Bitwise Operator sublibrary provides commonly used operations on bits
and bit fields.

Bitwise Operator blocks support:

• Scalar and vector inputs

• Fixed-point, integer (signed or unsigned), and Boolean data types

• A maximum word size of 128 bits

Bitwise Operator blocks do not currently support:

• Double, single, or complex data types

• Matrix inputs

To open the Bitwise Operators sublibrary, double-click its icon

in the hdldemolib window. Alternatively, you can open the
Bitwise Operators sublibrary directly by typing the following command at
the MATLAB prompt:
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hdldemolib_bitops

The following figure shows the Bitwise Operators sublibrary.
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Bit Concat

Description
The Bit Concat block concatenates up to 128 input words into a single output.
The input port labeled L designates the lowest-order input word; the port
labeled H designates the highest-order input word. The right-left ordering of
words in the output follows the low-high ordering of input signals.

The operation of the block depends on the number and dimensions of the
inputs, as follows:

• Single input: The input can be a scalar or a vector. When the input is a
vector, the coder concatenates the individual vector elements together.

• Two inputs: Inputs can be any combination of scalar and vector. When
one input is scalar and the other is a vector, the coder performs scalar
expansion. Each vector element is concatenated with the scalar, and the
output has the same dimension as the vector. When both inputs are
vectors, they must have the same size.

• Three or more inputs (up to a maximum of 128 inputs): Inputs must be
uniformly scalar or vector. All vector inputs must have the same size.

Data Type Support

• Input: Fixed-point, integer (signed or unsigned), Boolean
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• Output: Unsigned fixed-point or integer (Maximum concatenated output
word size: 128 bits)

HDL Implementation and Implementation Parameters
Implementation: default

Implementation Parameters: InputPipeline, OutputPipeline

Parameters and Dialog Box

Number of Inputs: Enter an integer specifying the number of input signals.
The number of input ports displayed on the block updates when Number of
Inputs changes.
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• Default: 2.

• Minimum: 1

• Maximum: 128

Caution Make sure that the Number of Inputs is equal to the number of
signals you connect to the block. If unconnected inputs are present on the
block, an error will occur at code generation time.
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Bit Reduce

Description
The Bit Reduce block performs a selected bit reduction operation (AND, OR,
or XOR) on all the bits of the input signal, reducing it to a single-bit result.

Data Type Support

• Input: Fixed-point, integer (signed or unsigned), Boolean

• Output: ufix1

HDL Implementation and Implementation Parameters
Implementation: default

Implementation Parameters: InputPipeline, OutputPipeline
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Parameters and Dialog Box

Reduction Mode

Default: AND

Specifies the reduction operation, as follows:

• AND: Perform a bitwise AND reduction of the input signal.

• OR: Perform a bitwise OR reduction of the input signal.

• XOR: Perform a bitwise XOR reduction of the input signal.
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Bit Rotate

Description
The Bit Rotate block rotates the input signal left or right by a specified
number of bit positions.

Data Type Support

• Input: Fixed-point, integer (signed or unsigned), Boolean

- Minimum word size: 2 bits

- Maximum word size: 128 bits

• Output: Has the same data type as the input signal

HDL Implementation and Implementation Parameters
Implementation: default

Implementation Parameters: InputPipeline, OutputPipeline
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Parameters and Dialog Box

Rotate Mode: Specifies direction of rotation, either left or right.

Default: Rotate Left

Rotate Length: Specifies the number of bits to be rotated. Rotate Length
must be greater than or equal to zero.

Default: 0
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Bit Shift

Description
The Bit Shift block performs a logical or arithmetic shift on the input signal.

Data Type Support

• Input: Fixed-point, integer (signed or unsigned), Boolean

- Minimum word size: 2 bits

- Maximum word size: 128 bits

• Output: Has the same data type as the input signal

HDL Implementation and Implementation Parameters
Implementation: default

Implementation Parameters: InputPipeline, OutputPipeline
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Parameters and Dialog Box

Shift Mode

Default: Shift Left Logical

Specifies the type and direction of shift, as follows:

• Shift Left Logical

• Shift Right Logical

• Shift Right Arithmetic

Shift Length

Default: 0

Specifies the number of bits to be shifted. Shift Length must be greater
than or equal to zero.
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Bit Slice

Description
The Bit Slice block returns a field of consecutive bits from the input signal.
The lower and upper boundaries of the bit field are specified by zero-based
indices entered in the LSB Position andMSB Position parameters.

Data Type Support

• Input: Fixed-point, integer (signed or unsigned), Boolean

• Output: unsigned fixed-point or unsigned integer

HDL Implementation and Implementation Parameters
Implementation: default

Implementation Parameters: InputPipeline, OutputPipeline
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Parameters and Dialog Box

MSB Position

Default: 7

Specifies the bit position (zero-based) of the most significant bit (MSB) of the
field to be extracted.

For an input word size WS, LSB Position andMSB Position should satisfy
the following constraints:

WS > MSB Position >= LSB Position >= 0;
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The word length of the output is computed as (MSB Position - LSB
Position) + 1.

LSB Position

Default: 0

Specifies the bit position (zero-based) of the least significant bit (LSB) of the
field to be extracted.
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What Is the Generated Model?
In some circumstances, significant differences in behavior can arise between
a Simulink model and the HDL code generated from that model. Such
differences fall into two categories:

• Numerics: differences in intermediate and/or final computations. For
example, a selected block implementation may restructure arithmetic
operations to optimize for speed (see “Locate Numeric Differences After
Speed Optimization” on page 14-4). Where such numeric differences exist,
the HDL code is no longer bit-true to the model.

• Latency: insertion of delays of one or more clock cycles at certain points
in the HDL code. Some block implementations that optimize for area can
introduce these delays. Where such latency exists, the timing of the HDL
code is no longer cycle-accurate with respect to the model.

To help you evaluate such cases, the coder creates a generated model that is
bit-true and cycle-accurate with respect to the generated HDL code. The
generated model lets you:

• Run simulations that reflect the behavior of the generated HDL code.

• Create test benches based on the generated model, rather than the original
model.

• Visually detect (by color highlighting of affected subsystems) differences
between the original and generated models.

The coder creates a generated model as part of the code generation process,
and generates test benches based on the generated model, rather than the
original model. In cases where no latency or numeric differences occur, you
can disregard the generated model except when generating test benches.

The coder also provides options so that you can:

• Specify the color highlighting of differences between the original and
generated models.

• Specify a name or prefix for the generated model.
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“Defaults and Options for Generated Models” on page 14-12 describes these
options.
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Locate Numeric Differences After Speed Optimization
This example first selects a speed-optimized Sum block implementation for
simple model that computes a vector sum. It then examines a generated
model and locates the numeric changes introduced by the optimization.

The model, simplevectorsum_tree, consists of a subsystem, vsum, driven by
a vector input of width 10, with a scalar output. The following figure shows
the root level of the model.

The device under test is the vsum subsystem, shown in the following figure.
The subsystem contains a Sum block, configured for vector summation.
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The model is configured to use the Tree implementation when generating
HDL code for the Sum block within the vsum subsystem. This implementation,
optimized for minimal latency, generates a tree-shaped structure of adders
for the Sum block.

To select a nondefault implementation for an individual block:

1 Right-click the block and select HDL Code > HDL Block Properties .

2 In the HDL Properties dialog box, select the desired implementation from
the Architecture menu.

3 Click Apply and close the dialog box.

After code generation, you can view the validation model,
gm_simplevectorsum_tree_vnl.
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The vsum subsystem has been highlighted in cyan. This highlighting indicates
that the subsystem differs in some respect from the vsum subsystem of the
original model.

The following figure shows the vsum subsystem in the generated model.
Observe that the Sum block is now implemented as a subsystem, which also
appears highlighted.
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The following figure shows the internal structure of the Sum subsystem.
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The generated model implements the vector sum as a tree of adders (Sum
blocks). The vector input signal is demultiplexed and connected, as five
pairs of operands, to the five leftmost adders. The widths of the adder
outputs increase from left to right, as required to avoid overflow in computing
intermediate results.
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View Latency Differences After Area Optimization
This example uses the simplevectorsum_cascade model. This model
is identical to the model in (“Locate Numeric Differences After Speed
Optimization” on page 14-4), except that it uses a cascaded implementation
for the Sum block. This implementation introduces latency differences.

The following figure shows the HDL Properties dialog box for a Sum block,
with the Cascade implementation selected. This implementation generates a
cascade of adders for the Sum block.

In the generated code, partial sums are computed by adders arranged in a
cascade structure. Each adder computes a partial sum by demultiplexing and
adding several inputs in succession. These computation take several clock
cycles. On each cycle, an addition is performed; the result is then added to
the next input.

To complete computations within one sample period, the system master clock
runs faster than the nominal sample rate of the system. A latency of one clock
cycle (in the case of this model) is required to transmit the final result to the
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output. The inputs cannot change until the computations are complete and
the final result is presented at the output.

The generated HDL code runs at two effective rates: a faster rate for internal
computations, and a slower rate for input/output. A special timing controller
entity (vsum_tc) generates these rates from a single master clock using
counters and multiple clock enables. The vsum_tc entity definition is written
to a separate code file.

The generated model looks like this:

The subsystem is highlighted in cyan. This highlighting indicates that the
subsystem differs in some respect from the vsum subsystem of the original
model.

The following block diagram shows the vsum subsystem in the generated
model. The subsystem has been restructured to reflect the structure of the
generated HDL code; inputs are grouped and routed to three adders for
partial sum computations.

A Unit Delay (highlighted in cyan) has been inserted before the final output.
This block delays (in this case, for one sample period) the appearance of the
final sum at the output. The delay reflects the latency of the generated HDL
code.
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Note The HDL code generated from the example model used in this section
is bit-true to the original model.

However, in some cases, cascaded block implementations can produce
numeric differences between the original model and the generated HDL code,
in addition to the introduction of latency. Numeric differences can arise from
saturation and rounding operations.
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Defaults and Options for Generated Models

In this section...

“Defaults for Model Generation” on page 14-12

“GUI Options” on page 14-13

“Generated Model Properties for makehdl” on page 14-15

Defaults for Model Generation
This section summarizes the defaults that the coder uses when building
generated models.

Model Generation
The coder creates a generated model as part of the code generation process.
The coder builds the generated model in memory, before actual generation
of HDL code. The HDL code and the generated model are bit-true and
cycle-accurate with respect to one another.

Note The in-memory generated model is not written to a model file unless
you explicitly save it.

Naming of Generated Models
The naming convention for generated models is:

prefix_modelname

where the default prefix is gm_, and the default modelname is the name of
the original model.

If code is generated more than once from the same original model, and
previously generated models exist in memory, an integer is suffixed to the
name of each successively generated model. The suffix provides a unique
name for each generated model. For example, if the original model is named
test, generated models will be named gm_test, gm_test0, gm_test1, etc.
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Note When regenerating code from your models, be sure to select the original
model for code generation, not a previously generated model. Generating
code from a generated model might introduce unintended delays or numeric
differences that make the model operate incorrectly.

Block Highlighting
By default, blocks in a generated model that differ from the original model,
and their ancestor (parent) blocks in the model hierarchy, are highlighted in
the default color, cyan. You can quickly see whether differences have been
introduced, by examining the root level of the generated model.

If the original and generated models match, no blocks appear highlighted.

GUI Options
The HDL Coder GUI provides high-level options controlling the generation
and display of generated models. More detailed control is available through
the makehdl command (see “Generated Model Properties for makehdl” on
page 14-15). Generated model options are located in the top-level HDL Code
Generation pane of the Configuration Parameters dialog box:
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Options include:

• Generate HDL code: Generate HDL code for the device under test (DUT).
By default, this check box is selected.

• Generate validation model: Generate a validation model to verify
functional equivalence of the generated model with the original model. By
default, this check box is cleared.
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Generated Model Properties for makehdl
The following summary describes makehdl properties that provide detailed
controls for the generated model.

Property and Value(s) Description

'Generatedmodelnameprefix',
['string']

The default name for the generated model is
gm_modelname, where gm_ is the default prefix and
modelname is the original model name. To override
the default prefix, assign a string value to this
property.

'Generatemodelname', ['string'] By default, the original model name is used as the
modelname substring of the generated model name.
To specify a different model name, assign a string
value to this property.

'CodeGenerationOutput', 'string' Controls the production of generated code and
display of the generated model. Values are:

• GenerateHDLCode: (Default) Generate code, but
do not display the generated model.

• GenerateHDLCodeAndDisplayGeneratedModel:
Create and display generated model, but do not
proceed to code generation.

• DisplayGeneratedModelOnly: Generate both
code and model, and display model when
completed.

'GenerateHDLCode', ['on' | 'off'] Controls whether or not to generate HDL code for
the DUT. The default is 'on'.

'GenerateValidationModel', ['on' |
'off']

Controls whether or not to generate a validation
model. The default is 'off'.
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Property and Value(s) Description

'Highlightancestors', ['on' |
'off']

By default, blocks in a generated model that differ
from the original model, and their ancestor (parent)
blocks in the model hierarchy, are highlighted in
a color specified by the Highlightcolor property.
If you do not want the ancestor blocks to be
highlighted, set this property to 'off'.

'Highlightcolor', 'RGBName' Specify the color used to highlight blocks in a
generated model that differ from the original model
(default: cyan). Specify the color (RGBName) as one
of the following color string values:

• cyan (default)

• yellow

• magenta

• red

• green

• blue

• white

• black
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Limitations for Generated Models

In this section...

“Fixed-Point Limitation” on page 14-17

“Double-Precision Limitation” on page 14-17

“Model Properties Not Supported for Generated Models” on page 14-18

Fixed-Point Limitation
The maximum Simulink fixed-point word size is 128 bits. HDL does not have
such a limit. This can lead to cases in which the generated HDL code is not
bit-true to the generated model.

When the result of a computation in the generated HDL code has a word size
greater than 128 bits:

• The coder issues a warning.

• Computations in the generated model (and the generated HDL test bench)
are limited to a result word size of 128 bits.

• This word size limitation does not apply to the generated HDL code, so
results returned from the HDL code may not match the HDL test bench or
the generated model.

Double-Precision Limitation
When the binary point in double-precision computations is very large or
very small, the scaling can become inf or 0. The limits of precision can be
expressed as follows:

log2(realmin) ==> -1022

log2(realmax) ==> 1024

Where these limits are exceeded, the binary point is saturated and a warning
is issued. If the generated HDL code has binary point scaling greater than
2^1024, the generated model has a maximum scaling of 2^1024.
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Similarly if the generated HDL code has binary point scaling smaller than
2^-1022, then the generated model has scaling of 2^-1022.

Model Properties Not Supported for Generated
Models
The coder disables the following model parameters during code generation,
and restores them after code generation completes:

• Block Reduction (BlockReductionOpt)

• Conditional input branch execution (ConditionallyExecuteInputs)

These properties are disabled in the generated model, even if they are enabled
in the source model.
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Optimization With Constrained Overclocking

In this section...

“Why Constrain Overclocking?” on page 15-2

“When to Use Constrained Overclocking” on page 15-2

“Set Overclocking Constraints” on page 15-3

“Constrained Overclocking Limitations” on page 15-4

Why Constrain Overclocking?
Overclocking can cause your design clock rate to exceed the maximum clock
rate of your target hardware when your original design’s clock rate is high.
Without constrained overclocking, automated speed and area optimizations
can modify the design implementation architecture and often result in local
upsampling.

For example, the following optimizations and implementations can result
in upsampled rates in your design:

• RAM mapping

• Streaming

• Resource sharing

• Loop streaming

• Specific block implementations, such as cascade architectures,
Newton-Raphson architectures, and some filter implementations

When to Use Constrained Overclocking
When using area and speed optimizations, you can specify constraints on
overclocking using theMax oversampling andMax computation latency
parameters. If you want a single-rate design, you can use these parameters to
prevent overclocking, or limit overclocking within a range.

Suppose you have a design that does not currently fit in the target hardware,
but is already running at the target device’s maximum clock frequency, and
you know the inputs to your design can change at most every N cycles.
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You can enable area optimizations, such as resource sharing, and specify a
single-rate implementation using Max oversampling. You can use Max
computation latency to give the coder a latency budget of N cycles to
perform the computation. In this situation, the coder can reuse the shared
resource at the original clock rate over N cycles, instead of implementing the
sharing optimization by overclocking the shared resource.

To learn more about the Max oversampling parameter, see “Maximum
Oversampling Ratio” on page 15-5.

To learn more about the Max computation latency parameter, see
“Maximum Computation Latency” on page 15-7.

Set Overclocking Constraints
You can use the MaxOversampling and MaxComputationLatency parameters
to constrain overclocking when optimizing area and speed.

The following table shows how to set MaxOversampling and
MaxComputationLatency for different design implementation results:

Desired
implementation
result

Without
Optimizations

With Optimizations

Unlimited
overclocking

MaxOversampling = 0 MaxOversampling = 0

Max computation
latency > 1

Overclocking with
constraints

MaxOversampling > 1 MaxOversampling > 1

MaxComputationLatency
> 1

No overclocking
(single rate)

MaxOversampling = 1 MaxOversampling = 1

MaxComputationLatency
> 1

To learn how to specify MaxOversampling and MaxComputationLatency, see:

• “Specify Maximum Oversampling Ratio” on page 15-5
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• “Specify Maximum Computation Latency” on page 15-8

Constrained Overclocking Limitations
When you constrain overclocking, the following limitations apply:

• Your DUT must be single-rate if you set Max oversampling = 1.

• Loop streaming and RAM mapping are disabled when you set Max
oversampling = 1, even if Max computation latency > 1.
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Maximum Oversampling Ratio

In this section...

“What Is the Maximum Oversampling Ratio?” on page 15-5

“Specify Maximum Oversampling Ratio” on page 15-5

“Maximum Oversampling Ratio Limitations” on page 15-6

What Is the Maximum Oversampling Ratio?
The Max oversampling ratio is the maximum ratio of the final design
implementation sample rate to the original sample rate. This parameter
enables you to limit clock frequency.

The following table shows the possible values for the maximum oversampling
ratio and how they affect the design implementation.

Max
Oversampling
value

Effect on design implementation

Inf (default) Sample rate is unconstrained.

1 Single-rate implementation ; no overclocking.

> 1 Oversampling is allowed, but limited to the specified
maximum.

Specify Maximum Oversampling Ratio

Using Configuration Parameters Dialog Box
In the Configuration Parameters dialog box, you can specify the maximum
oversampling ratio:
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1 In HDL Code Generation > Global Settings > , click the Optimization
tab.

2 ForMax oversampling, enter your maximum oversampling ratio.

Using HDL Workflow Advisor
In the HDL Workflow Advisor, you can specify the maximum oversampling
ratio:

1 In the HDL Code Generation > Set Code Generation Options > Set
Advanced Options task, click the Optimization tab.

2 ForMax oversampling, enter your maximum oversampling ratio.

On the Command Line
On the command line, set the MaxOversampling property using makehdl or
hdlset_param.

For example, to set the maximum oversampling ratio to 4 for a subsystem,
dut, in your model, mymodel, enter:

hdlset_param ('myModel/dut', 'MaxOversampling', 4)

Maximum Oversampling Ratio Limitations
When the maximum oversampling ratio is 1, the following limitations apply:

• DUT subsystem must be single-rate.

• Delay balancing for the model must be enabled.

• There can be at most 1 subsystem within a subsystem hierarchy that has a
nondefault SharingFactor or StreamingFactor setting.

• You cannot instantiate multiple times a subsystem with a nondefault
SharingFactor or StreamingFactor setting in its subsystem hierarchy.
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Maximum Computation Latency

In this section...

“What Is Maximum Computation Latency?” on page 15-7

“Specify Maximum Computation Latency” on page 15-8

“Maximum Computation Latency Restrictions” on page 15-8

What Is Maximum Computation Latency?
The Max computation latency parameter enables you to specify a time
budget for the coder when performing a single computation. Within this time
budget, the coder does its best to optimize your design without exceeding the
Max oversampling ratio.

When you set aMax computation latency, N, each Simulink time step takes
N time steps in the implemented design.

The following table shows the possible values for the maximum computation
latency and their effect on the design implementation.

Max computation
latency value, N

Description

N = 1 (default)
or N < 1

• Design implementation captures the DUT inputs
every clock cycle.

• If maximum oversampling ratio is set to 1, most
area optimizations are not possible.

• If maximum oversampling ratio is greater than
1, coder implements optimizations with local
overclocking.

N > 1 • Design implementation captures the DUT inputs
once every N clock cycles, starting with first cycle
after reset. DUT outputs are held stable for N
cycles.

• Coder can perform optimizations without
oversampling.

• Note that you cannot set the maximum
computation latency to Inf.
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Specify Maximum Computation Latency

Using Configuration Parameters Dialog Box
In the Configuration Parameters dialog box, you can specify the maximum
computation latency:

1 In HDL Code Generation > Global Settings > , click the Optimization
tab.

2 For Max computation latency, enter the number of cycles the coder can
use to implement a computation.

Using HDL Workflow Advisor
In the HDL Workflow Advisor, you can specify the maximum oversampling
ratio:

1 In the HDL Code Generation > Set Code Generation Options > Set
Advanced Options task, click the Optimization tab.

2 For Max computation latency, enter the number of cycles the coder can
use to implement a computation.

On the Command Line
On the command line, set the MaxComputationLatency property using
makehdl or hdlset_param.

For example, if you know the inputs change at most every 1000 cycles for your
DUT subsystem, dut, in your model, mymodel, enter:

hdlset_param ('myModel/dut', 'MaxComputationLatency', 1000)

Maximum Computation Latency Restrictions
The maximum computation latency feature has the following restrictions:

• You cannot set the maximum computation latency to Inf.
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Streaming

In this section...

“What is Streaming?” on page 15-9

“Specify Streaming” on page 15-10

“Requirements and Limitations for Streaming” on page 15-10

What is Streaming?
Streaming is an area optimization in which the coder transforms a vector
data path to a scalar data path (or to several smaller-sized vector data paths).
By default, the coder generates fully parallel implementations for vector
computations. For example, the coder realizes a vector sum as a number
of adders, executing in parallel during a single clock cycle. This technique
can consume a large number of hardware resources. With streaming, the
generated code saves chip area by multiplexing the data over a smaller
number of shared hardware resources.

By specifying a streaming factor for a subsystem, you can control the degree
to which such resources are shared within that subsystem. Where the ratio of
streaming factor (Nst) to subsystem data path width (Vdim) is 1:1, the coder
implements an entirely scalar data path. A streaming factor of 0 (the default)
produces a fully parallel implementation (i.e., without sharing) for vector
computations. Depending on the width of the data path, you can also specify
streaming factors between these extrema.

If you know the maximal vector dimensions and the sample rate for a
subsystem, you can compute the possible streaming factors and resulting
sample rates for the subsystem. However, even if the requested streaming
factor is mathematically possible, the subsystem must meet other criteria
for streaming. See “Requirements and Limitations for Streaming” on page
15-10 for details.

By default, when you apply the streaming optimization, the coder oversamples
the shared hardware resource in order to generate an area-optimized
implementation with the original latency. You can limit the oversampling
ratio to meet target hardware clock constraints. For details, see “Optimization
With Constrained Overclocking” on page 15-2.
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You can generate and use the validation model to verify that the output of
the optimized DUT is bit-true to the results produced by the original DUT. To
learn more about the validation model, see “What Is the Validation Model?”
on page 15-24.

Specify Streaming
You apply streaming at the subsystem level. Specify the streaming factor
by setting the subsystem HDL parameter StreamingFactor. You can set
StreamingFactor in the HDL Properties dialog for a subsystem, as shown in
the following figure.

Alternatively, you can set StreamingFactor using the hdlset_param
function, as in the following example.

dut = 'ex_pdcontroller_multi_instance/Controller';

hdlset_param(dut,'StreamingFactor', 24);

Requirements and Limitations for Streaming
This section describes the criteria for streaming that subsystems must meet.
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Blocks That Support Streaming
The coder supports a large number of blocks for streaming. As a best practice,
run the checkhdl function before generating streaming code for a subsystem.
checkhdl reports blocks in your subsystem that are incompatible with
streaming. If you initiate streaming code generation for a subsystem that
contains incompatible blocks, the streaming request fails.

The coder cannot apply the streaming optimization to a model reference.

How To Determine Streaming Factor and Sample Time
In a given subsystem, if Nst is the streaming factor, and Vdim is the maximum
vector dimension, then the data path of the resultant streamed subsystem
can be either of the following:

• Of width Vstream = (Vdim/Nst)

• Scalar

If the original subsystem operated with a sample time S, then the streamed
subsystem operates with a sample time of S/Nst.

Checks and Requirements for Streaming Subsystems
Before applying streaming, the coder performs a series of checks on the
subsystems to be streamed. You can stream a subsystem if it meets all the
following criteria:

• The streaming factor Nst must be a perfect divisor of the vector width Vdim.

• The subsystem must be a single-rate subsystem that does not contain rate
changes or rate transitions.

Because of this requirement, do not specify HDL implementations that are
inherently multirate for blocks within the subsystem. For example, using
the Cascade implementation (for the Sum, Product, MinMax, and other
blocks) is not allowed within a streamed subsystem.

• All vector data paths in the subsystem must have the same widths.

• The subsystem must not contain nested subsystems.

15-11



15 Optimization

• All blocks within the subsystem must support streaming. The coder
supports a large number of blocks for streaming. As a best practice, run
checkhdl before generating streaming code for a subsystem. checkhdl
reports blocks in your subsystem that are incompatible with streaming.
If you initiate streaming code generation for a subsystem that contains
incompatible blocks, the streaming request will fail.

If the requested streaming factor cannot be implemented, the coder generates
non-streaming code. It is good practice to generate an Optimization Report.
The Streaming and Sharing page of the report provides information about
conditions that prevent streaming.
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Area Reduction with Streaming
This example illustrates:

• Specification of a streaming factor for a subsystem

• Generation of HDL code and a validation model for the subsystem.

The following example is a single-rate model that drives the Controller
subsystem with a vector signal of width 24.

The following figure shows the Controller subsystem, which is the DUT
in this example.

By generating HDL code and a report on resource utilization, you can
determine how many multipliers, adders/subtractors, registers, RAMs, and
multiplexers are generated from this DUT in the default case. To do so, type
the following commands:

dut = 'ex_pdcontroller_multi_instance/Controller';

hdlset_param(dut,'StreamingFactor', 0);
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makehdl(dut,'ResourceReport','on');

The following figure shows the Resource Utilization Report for the Controller
subsystem. The report shows the number of multipliers, adders/subtractors,
registers, RAMs, and multiplexers that the coder generates.
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If you choose an optimal StreamingFactor for the DUT, you can achieve
a drastic reduction in the number of multipliers and adders/subtractors
generated. The following commands set StreamingFactor to the largest
possible value for this subsystem and then generate VHDL code and a
Resource Utilization Report.

dut = 'ex_pdcontroller_multi_instance/Controller';

hdlset_param(dut,'StreamingFactor', 24);

makehdl(dut,'ResourceReport','on', 'GenerateValidationModel','on');

During code generation, the coder reports latency in the generated model. It
also reports generation of the validation model.

### Starting HDL Check.

### HDL Check Complete with 0 errors, 0 warnings and 0 messages.

### The DUT requires an initial pipeline setup latency. Each output port experiences

these additional delays

### Output port 0: 1 cycles

### Generating new validation model: gm_ex_pdcontroller_multi_instance4_vnl.mdl

### Validation Model Generation Complete.

### Begin VHDL Code Generation

### MESSAGE: The design requires 24 times faster clock with respect to the base rate = 2.

### Working on ex_pdcontroller_multi_instance/Controller/err_d_serializercomp

as hdlsrc\err_d_serializercomp.vhd

### Working on ex_pdcontroller_multi_instance/Controller/Saturation_out1_serialcomp

as hdlsrc\Saturation_out1_serialcomp.vhd

### Working on ex_pdcontroller_multi_instance/Controller/kconst_serializercomp

as hdlsrc\kconst_serializercomp.vhd

### Working on ex_pdcontroller_multi_instance/Controller/kconst_serializercomp1

as hdlsrc\kconst_serializercomp1.vhd

### Working on Controller_tc as hdlsrc\Controller_tc.vhd

### Working on ex_pdcontroller_multi_instance/Controller as hdlsrc\Controller.vhd

### Generating package file hdlsrc\Controller_pkg.vhd

### Generating HTML files for code generation report in

C:\hdlsrc\html\ex_pdcontroller_multi_instance directory ...
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### HDL Code Generation Complete.

After code generation completes, you can view the results of the
StreamingFactor optimization. In the Resource Utilization Report, you can
see that the coder generates only 2 multipliers and 2 adders for the Controller
subsystem.
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The coder also produces a Streaming and Sharing report that shows:

• The StreamingFactor that you specified

• The other usable StreamingFactor values for this subsystem

• Latency (delays) introduced in the generated model

• A hyperlink to the validation model, if generated
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The Validation Model
The following figure shows the validation model generated for the Controller
subsystem.
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The lower section of the validation model contains a copy of the original DUT
(Controller_vnl). This single-rate subsystem runs at its original rate.

The upper section of the validation model contains the streaming version of
the DUT (Controller). Internally, this subsystem runs at a different rate
than the original DUT.

The following figure shows the interior of the Controller subsystem.

Inspection of the Controller subsystem shows that it is a multirate subsystem,
having two rates that operate as follows:
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• Inputs and outputs run at the same rate as the exterior model.

• Dual-rate Serializer blocks receive vector data at the original rate and
output a stream of scalar values at the higher (24x) rate.

• Interior blocks between Serializers and Deserializer run at the higher rate.

• The Deserializer block receives scalar values at the higher rate and buffers
values into a 24-element output vector running at the original rate.

The Compare subsystem (see following figure) receives and compares outputs
from the Controller and Controller_vnl subsystems. To compensate for
the latency of the Controller subsystem (reported during code generation),
input from the Controller_vnl subsystem is delayed by one clock cycle. A
discrepancy between the outputs of the two subsystems triggers an assertion.

To verify that a generated model with streaming is bit-true to its original
counterpart in a validation model:

1 Open the Compare subsystem.

2 Double click the Double click to turn on/off all scopes button.

3 Run the validation model.

4 Observe the compare:Out1 scope. The error signal display should show a
line through zero, indicating that the data comparisons were equal.
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What Is the Validation Model?
Before generating code, the coder creates a behavioral model of the HDL
code, called the generated model. The generated model uses HDL-specific
block implementations, and it implements the area and speed optimizations
that you specify.

Because the generated model is often substantially different from the original
model, the coder can also create a validation model to compare the original
model with the generated model. The validation model inserts delays at the
outputs of the original model to compensate for latency differences, and
compares the outputs of the two models. When you simulate the validation
model, numeric differences in the output data trigger an assertion.

Using the validation model, you can verify that the output of the optimized
DUT is bit-true to the results produced by the original DUT.

A validation model contains:

• A generated model.

• An original model, with compensating delays inserted.

• Original inputs, routed to both the original model and generated model.

• Scopes for comparing and viewing the outputs of the original model and
generated model.
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Resource Sharing

In this section...

“What Is Resource Sharing?” on page 15-25

“Benefits and Costs of Resource Sharing” on page 15-26

“Specify Resource Sharing” on page 15-26

“Requirements for Resource Sharing” on page 15-27

“Resource Sharing Information in Reports” on page 15-29

What Is Resource Sharing?
Resource sharing is an area optimization in which the coder identifies multiple
functionally equivalent resources within a subsystem or MATLAB Function
block and replaces them with a single resource. The coder time-multiplexes
the data over the shared resource to perform the same operations.

The sharing factor for a subsystem is the number of blocks that can share a
single resource.

If you specify a nonzero sharing factor for a MATLAB Function block, the
coder tries to identify and share that number of functionally equivalent
multipliers.

If you specify a nonzero sharing factor for a subsystem, the coder tries to
identify and share that number of functionally equivalent instances of the
following types of blocks:

• Gain

• Product

• Atomic Subsystem

• MATLAB Function

• Model reference

By default, when you apply the sharing optimization, the coder oversamples
the shared hardware resource in order to generate an area-optimized
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implementation with the original latency. You can limit the oversampling
ratio to meet target hardware clock constraints. For details, see “Optimization
With Constrained Overclocking” on page 15-2.

You can generate and use the validation model to verify that the output of
the optimized DUT is bit-true to the results produced by the original DUT. To
learn more about the validation model, see “What Is the Validation Model?”
on page 15-24.

Benefits and Costs of Resource Sharing
Resource sharing can substantially reduce your chip area. For example, the
generated code may use one multiplier to perform the operations of several
identically configured multipliers from the original model.

However, resource sharing has the following costs:

• Uses more multiplexers and may use more registers.

• Reduces opportunities for distributed pipelining or retiming, because the
coder does not pipeline across clock rate boundaries.

Specify Resource Sharing
To open an example showing how to use resource sharing, enter:

hdlcoder_sharing_optimization

Specify Resource Sharing from the UI
To specify resource sharing from the UI:

1 Right-click the subsystem or MATLAB Function block.

2 Select HDL Code > HDL Block Properties.

3 In the SharingFactor field, enter the number of shareable resources.

Specify Resource Sharing from the Command Line
Set the SharingFactor using hdlset_param, as in the following example.
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dut = 'ex_dimcheck/Channel';

hdlset_param(dut,'SharingFactor',3);

Requirements for Resource Sharing
On a Subsystem block, model reference, or MATLAB Function block, you can
specify the resource sharing optimization.

Blocks to be shared within a subsystem have the following requirements:

• Single-rate.

• If the block is within a feedback loop, at least one Unit Delay or Delay
block connected to each output port.

• If you set the maximum oversampling ratio to 1, shared resources cannot
be inside feedback loops.

If you want to share Atomic Subsystem blocks within a subsystem:

• The only state elements that these blocks can contain are Unit Delay
and Delay blocks. Unit Delay and Delay blocks must have the Initial
condition parameter set to 0.

• These blocks must not contain enabled or triggered subsystems.

• These blocks must not contain a subsystem that does not meet the
requirements for resource sharing.

If you want to share MATLAB Function blocks within a subsystem, they
must not use:

• Persistent variables

• Loop streaming

• Output pipelining

If you want to share model reference instances within a subsystem, all model
references that point to the same submodel must have the same rate after
optimizations and rate propagation. The model reference final rate may
differ from the original rate, but all model references that point to the same
submodel must have the same final rate.
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Functionally Equivalent Blocks for Resource Sharing

Block Type Functionally equivalent if they have...

Product • Equivalent input and output data types

• Equivalent rounding and saturation modes

Gain • Equivalent input and output data types

• Equivalent rounding and saturation modes

Gain constants can have different values, but they
must have the same data type.

Atomic Subsystem The same checksum. Atomic subsystems must be
identical to be shared.

Limitations for Atomic Subsystem Sharing
The coder cannot apply resource sharing to atomic subsystems that contain
state elements other than the Delay and Unit Delay blocks. Therefore, you
cannot share atomic subsystems that contain the following blocks or block
implementations:

• Detect Change

• Discrete Transfer Fcn

• Enabled Subsystem

• HDL FFT

• HDL FIFO

• Math Function (conj, hermitian, transpose)

• MATLAB Function blocks that contain persistent variables

• Sqrt

• Triggered Subsystem

• Unit Delay Resettable

• Unit Delay Enabled Resettable

• Cascade architecture (Minmax, Product, Sum)
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• CORDIC architecture

• Reciprocal Newton architecture

• Filter blocks

• Communications System Toolbox blocks

• DSP System Toolbox blocks

• Stateflow blocks

• Blocks that are not supported for delay balancing. For details, see “Delay
Balancing Limitations” on page 15-33.

Resource Sharing Information in Reports
If you generate a code generation report, for each subsystem that implements
sharing, the report includes the following information:

• Success: Provides a list of resource usage changes caused by sharing.

• Failure: Identifies which criterion was violated.

• Latency changes.

• Recommendations for other SharingFactor values that you could try.

For example, if you see Other possible factors: [2 .. 16] in the
report, try setting SharingFactor to 2 or to 16. The coder determines its
suggestions for other possible sharing factors based on the number of
equivalent blocks in your design. However, the suggested sharing factors
may not work because of the location of these equivalent blocks in your
design.
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Check Compatibility for Resource Sharing
To determine whether or not your model is compatible for resource sharing:

1 Before generating code, run checkhdl and eliminate general compatibility
issues.

2 In the Configuration Parameters dialog box, on the HDL Code
Generation pane, select Generate optimization report.

3 Set the sharing factor for the DUT and generate code.

4 After code generation completes, inspect the Optimization Report. The
report shows incompatible blocks or other conditions that can cause a
resource sharing request to fail.

5 If the Optimization Report shows problems, fix them and repeat these steps.

See also “Requirements for Resource Sharing” on page 15-27.
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Delay Balancing

In this section...

“Why Use Delay Balancing” on page 15-31

“Specify Delay Balancing” on page 15-32

“Delay Balancing Limitations” on page 15-33

Why Use Delay Balancing
The coder supports several optimizations, block implementations, and options
that introduce discrete delays into the model, with the goal of more efficient
hardware usage or achieving higher clock rates. Examples include:

• Optimizations: Optimizations such as output pipelining, streaming, or
resource sharing can introduce delays.

• Cascading: Some blocks support cascade implementations, which introduce
a cycle of delay in the generated code.

• Block implementations: Some block implementations inherently introduce
delays in the generated code. “Resolve Numerical Mismatch with Delay
Balancing” on page 15-34 discusses one such implementation.

When optimizations or block implementation options introduce delays along
the critical path in a model, the numerics of the original model and generated
model or HDL code may differ because equivalent delays are not introduced
on other, parallel signal paths. Manual insertion of compensating delays
along the other paths is possible, but is error prone and does not scale well to
very large models with many signal paths or multiple sample rates.

To help you solve this problem, the coder supports delay balancing. When
you enable delay balancing, if the coder detects introduction of new delays
along one path, it inserts matching delays on the other paths. When delay
balancing is enabled, the generated model is functionally equivalent to the
original model.
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Specify Delay Balancing
You can set delay balancing for an entire model. For finer control, you can
also set delay balancing for subsystems within the top-level DUT subsystem.

Set Delay Balancing For a Model
Use the following makehdl properties to set delay balancing for a model:

• BalanceDelays: By default, model-level delay balancing is enabled, and
subsystems within the model inherit the model-level setting. To learn how
to set delay balancing for a model, see BalanceDelays.

• GenerateValidationModel: By default, validation model generation is
disabled. When you enable delay balancing, generate a validation model
to view delays and other differences between your original model and the
generated model. To learn how to enable validation model generation, see
GenerateValidationModel.

For example, the following commands generate HDL code with delay
balancing and generate a validation model.

dut = 'ex_rsqrt_delaybalancing/Subsystem';

makehdl(dut,'BalanceDelays','on','GenerateValidationModel','on');

For more information about the validation model, see “What Is the Validation
Model?” on page 15-24.

Disable Delay Balancing For a Subsystem
You can disable delay balancing for an entire model, or disable a subsystem
within the top-level DUT subsystem. For example, if you do not want to
balance delays for a control path, you can put the control path in a subsystem,
and disable delay balancing for that subsystem.

To disable delay balancing for a subsystem within the top-level DUT
subsystem, you must disable delay balancing at the model level. Note
that when you disable delay balancing for the model, the validation model
does not compensate for latency inserted in the generated model due to
optimizations or block implementations. The validation model may therefore
show mismatches between the original model and generated model.
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To disable delay balancing for a subsystem within the top-level DUT
subsystem:

1 Disable delay balancing for the model.

2 Enable delay balancing for the top-level DUT subsystem.

3 Disable delay balancing for a subsystem within the DUT subsystem.

To learn how to set delay balancing for a subsystem, see “Set Delay Balancing
For a Subsystem” on page 11-51.

Delay Balancing Limitations
The following blocks do not support delay balancing:

• Cosimulation

• Data Type Duplicate

• Decrement To Zero

• Enable Port

• Frame Conversion

• Ground

• HDL FFT

• LMS Filter

• Model Reference

• To VCD File

• Trigger Port

• Magnitude-Angle to Complex

The following block implementations do not currently support delay balancing:

• hdldefaults.ConstantSpecialHDLEmission

• hdldefaults.NoHDL
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Resolve Numerical Mismatch with Delay Balancing
This example shows a simple case where the VHDL implementation of a block
introduces delays that cause a numerical mismatch between the original DUT
and the generated model and HDL code. The example then demonstrates how
to use delay balancing to fix the mismatch.

The following figure shows the DUT for the ex_rsqrt_delaybalancing
model. The DUT is a simple multirate subsystem that includes a Reciprocal
Square Root block (Sqrt). A Rate Transition block downsamples the output
signal to a lower sample rate.

Generate HDL code without delay balancing and generate a validation model:

dut = 'ex_rsqrt_delaybalancing/Subsystem';
makehdl(dut,'BalanceDelays','off','GenerateValidationModel','on');

Examination of the generated model shows that the coder has implemented
the Sqrt block as a subsystem:
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The following figure shows that the generated Sqrt subsystem introduces a
total of 5 cycles of delay. (This behavior is inherent to the Reciprocal Square
Root block implementation.) These delays map to registers in the generated
HDL code when UseRAM is off.

The scope in the following figure shows the results of a comparison run
between the original and generated models. The scope displays the following
signals, in descending order:

• The outputs from the original model

• The outputs from the generated model

• The difference between the two

The difference is nonzero, indicating a numerical mismatch between the
original and generated models.
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Two factors cause this discrepancy:

• The input signal branches into two parallel paths (to the Sqrt and product
blocks) but only the branch to the Sqrt block introduces delays.

• The downsampling caused by the rate transition drops samples.

You can solve these problems by manually inserting delays in the generated
model. However, using the coder’s delay balancing capability produces more
consistent results.

Generate HDL code with delay balancing and generate a validation model:

dut = 'ex_rsqrt_delaybalancing/Subsystem';

makehdl(dut,'BalanceDelays','on','GenerateValidationModel','on');
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The following figure shows the validation model. The lower subsystem is
identical to the original DUT. The upper subsystem represents the HDL
implementation of the DUT.

The upper subsystem (shown in the following figure) represents the HDL
implementation of the DUT. To balance the 5-cycle delay from the Sqrt
subsystem, the coder has inserted a 5-cycle delay on the parallel data path.
The coder has also inserted a 3-cycle delay before the Rate Transition to offset
the effect of downsampling.
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Hierarchy Flattening

In this section...

“What Is Hierarchy Flattening?” on page 15-38

“When To Flatten Hierarchy” on page 15-38

“Prerequisites For Hierarchy Flattening” on page 15-38

“Options For Hierarchy Flattening” on page 15-39

“How To Flatten Hierarchy” on page 15-39

“Limitations For Hierarchy Flattening” on page 15-40

What Is Hierarchy Flattening?
Hierarchy flattening enables you to remove subsystem hierarchy from the
HDL code generated from your design.

The coder considers blocks within a flattened subsystem to be at the same
level of hierarchy, and no longer grouped into separate subsystems. This
consideration allows the coder to reorganize blocks for optimization across the
original hierarchical boundaries, while preserving functionality.

When To Flatten Hierarchy
Flatten hierarchy to:

• Enable more extensive area and speed optimization.

• Reduce the number of HDL output files. For every subsystem flattened, the
coder generates one less HDL output file.

Avoid flattening hierarchy if you want to preserve one-to-one mapping from
subsystem name to HDL module or entity name. Not flattening hierarchy
makes the HDL code more readable.

Prerequisites For Hierarchy Flattening
To flatten hierarchy, a subsystem must have the following block properties.
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Property Required value

DistributedPipelining 'off'

StreamingFactor 0

SharingFactor 0

To flatten hierarchy, you must also have the MaskParameterAsGeneric global
property set to 'off'. For more information, see MaskParameterAsGeneric.

Options For Hierarchy Flattening
By default, a subsystem inherits its hierarchy flattening setting from
the parent subsystem. However, you can enable or disable flattening for
individual subsystems.

The hierarchy flattening options for a subsystem are listed in the following
table.

Hierarchy Flattening
Setting

Description

inherit (default) Use the hierarchy flattening setting of the parent subsystem. If
this subsystem is the highest-level subsystem, do not flatten.

on Flatten this subsystem.

off’ Do not flatten this subsystem, even if the parent subsystem is
flattened.

How To Flatten Hierarchy
To set hierarchy flattening using the HDL Block Properties dialog box:

1 Right-click the subsystem.

2 Select HDL Code > HDL Block Properties .

3 For FlattenHierarchy, select on, off, or inherit.
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To set hierarchy flattening from the command line, use hdlset_param. For
example, to turn on hierarchy flattening for a subsystem, my_dut:

hdlset_param('my_dut', 'FlattenHierarchy', 'on')

See also hdlset_param.

Limitations For Hierarchy Flattening
A subsystem cannot be flattened if the subsystem is:

• Atomic and instantiated in the design more than once.

• A black box implementation or model reference.

• An enabled or triggered subsystem.

• A masked subsystem.

Note This option removes subsystem boundaries before code generation. It
does not necessarily generate HDL code with a completely flat hierarchy.
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Loop Optimization

In this section...

“Loop Streaming” on page 15-41

“Loop Unrolling” on page 15-41

With loop optimization you can stream or unroll loops in generated code. Loop
streaming optimizes for area; loop unrolling optimizes for speed.

Loop Streaming
The coder streams a loop by instantiating the loop body once and using that
instance for each loop iteration.

The advantage of loop streaming is decreased area because the loop body is
instantiated only once. The disadvantage of loop streaming is lower speed.

Loop Unrolling
The coder unrolls a loop by instantiating multiple instances of the loop body
in the generated code.

The unrolled code can participate in distributed pipelining and resource
sharing optimizations. Distributed pipelining can increase speed; resource
sharing can decrease area.

Overall, however, the multiple instances created by loop unrolling are likely
to increase area. Loop unrolling also makes the code less readable.
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Optimize Loops in the MATLAB Function Block

In this section...

“MATLAB Function Block Loop Optimization Options” on page 15-42

“How to Optimize MATLAB Function Block Loops” on page 15-42

“Limitations for MATLAB Function Block Loop Optimization” on page 15-43

MATLAB Function Block Loop Optimization Options
The loop optimization options for a MATLAB Function block are listed in the
following table.

Loop Optimization
Setting

Description

none (default) Do not optimize loops.

Unrolling Unroll loops.

Streaming Stream loops.

How to Optimize MATLAB Function Block Loops
To select a loop optimization using the HDL Block Properties dialog box:

1 Right-click the MATLAB Function block.

2 Select HDL Code > HDL Block Properties .

3 For LoopOptimization, select none, Unrolling, or Streaming.

To select a loop optimization from the command line, use hdlset_param. For
example, to turn on loop streaming for a MATLAB Function block, my_mlfn:

hdlset_param('my_mlfn', 'LoopOptimization', 'Streaming')

See also hdlset_param.
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Limitations for MATLAB Function Block Loop
Optimization
The coder cannot stream a loop if:

• The loop index counts down. The loop index must increase by 1 on each
iteration.

• There are 2 or more nested loops at the same level of hierarchy within
another loop.

• Any particular persistent variable is updated both inside and outside a loop.

The coder can stream the loop when the persistent variable is:

• Updated inside the loop and read outside the loop.

• Read within the loop and updated outside the loop.
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RAM Mapping
RAM mapping is an area optimization. You can map to RAMs in HDL code
by using:

• UseRAM to map delays to RAM. For details, see “UseRAM” on page 11-90.

• MapPersistentVarsToRAM to map persistent arrays in a MATLAB Function
block to RAM. For details, see “MapPersistentVarsToRAM” on page 11-77.

• RAM blocks from the hdldemolib library. For details, see “RAM Blocks”
on page 13-3.

• Blocks with a RAM implementation. For details, see “RAM” on page 11-85.
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RAM Mapping with the MATLAB Function Block
This example shows how to map persistent arrays to RAM using the
MapPersistentVarsToRAM block-level parameter. The resource report shows
the area improvement with RAM mapping.

1 Open the hdlcoder_sobel_serial_eml model.

hdlcoder_sobel_serial_eml

The sobel_edge_hardware subsystem contains sobel_edge_eml, a
MATLAB Function block that uses persistent arrays. To view the MATLAB
code, double-click the sobel_edge_eml block.

2 In the sobel_edge_hardware subsystem, right-click the sobel_edge_eml
block and select HDL Code > HDL Block Properties.

3 Set MapPersistentVarsToRAM to off and click OK to disable RAM
mapping.

4 In the Simulation > Model Configuration Parameters > HDL Code
Generation pane, enable Generate resource utilization report and
click Apply.
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5 Click Generate to generate HDL code. The Code Generation Report
appears.

6 Select High-level Resource Report.

Note that the design uses 218 registers and no RAM.

7 Now, enable RAM mapping: right-click the sobel_edge_eml
block, select HDL Code > HDL Block Properties, and set
MapPersistentVarsToRAM to on. Click OK.

8 In the Simulation > Model Configuration Parameters > HDL Code
Generation pane, click Generate to generate HDL code. The Code
Generation Report appears.

9 Select High-level Resource Report.
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Note that the design now uses 25 registers and 2 RAMs.

To learn about design patterns that enable efficient RAMmapping of persistent
arrays in MATLAB Function blocks, see the eml_hdl_design_patterns/RAMs
library.

For more information, see:

• “MATLAB Function Block Design Patterns for HDL” on page 20-23

• “MapPersistentVarsToRAM” on page 11-77
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Insert Distributed Pipeline Registers in a Subsystem
This example shows how to use distributed pipelining with the dct8_fixed
model.

This example uses the following optimizations:

• Output pipelining

• Distributed pipelining

Open the model by typing dct8_fixed at the MATLAB prompt. The DUT is
the dct8_fixed/OneD_DCT8 subsystem.
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Set DistributedPipelining to off and OutputPipeline to 6 to insert 6
pipeline stages at the outputs of the DUT.

The generated model shows the placement of pipeline registers as highlighted
delays at the outputs of the DUT. For more information about generated
models, see “What Is the Generated Model?” on page 14-2.
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Set DistributedPipelining to on and OutputPipeline to 6 to distribute 6
pipeline stages for each signal path in the DUT.
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The generated model shows the distribution of pipeline registers as
highlighted delays within each signal path. There 6 pipeline registers for
each path.
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Distributed Pipelining and Hierarchical Distributed
Pipelining

In this section...

“What is Distributed Pipelining?” on page 15-53

“Benefits and Costs of Distributed Pipelining” on page 15-55

“Requirements for Distributed Pipelining” on page 15-56

“Specify Distributed Pipelining” on page 15-56

“Limitations of Distributed Pipelining” on page 15-57

“What is Hierarchical Distributed Pipelining?” on page 15-59

“Benefits of Hierarchical Distributed Pipelining” on page 15-61

“Specify Hierarchical Distributed Pipelining” on page 15-61

“Limitations of Hierarchical Distributed Pipelining” on page 15-62

“Distributed Pipelining Workflow” on page 15-62

“Selected Bibliography” on page 15-62

What is Distributed Pipelining?
Distributed pipelining, or register retiming, is a speed optimization that
moves existing delays within in a design to reduce the critical path while
preserving functional behavior.

The coder uses an adaptation of the Leiserson-Saxe retiming algorithm.

For example, in the following model, there is a delay of 2 at the output.
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The following diagram shows the model after distributed pipelining
redistributes the delay to reduce the critical path.
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Benefits and Costs of Distributed Pipelining
Distributed pipelining can reduce your design’s critical path, enabling you to
use a higher clock rate and increase throughput.
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However, distributed pipelining requires your design to contain a number
of delays. If you need to insert additional delays in your design to enable
distributed pipelining, this increases the area and the initial latency of your
design.

Requirements for Distributed Pipelining
Distributed pipelining requires your design to contain delays or registers that
can be redistributed. You can use input pipelining or output pipelining to
insert more registers.

If your design does not meet your timing requirements at first, try adding
more delays or registers to improve your results.

Specify Distributed Pipelining
You can specify distributed pipelining for a:

• Subsystem.

• MATLAB Function block within a subsystem. For details, see “Distributed
Pipeline Insertion for MATLAB Function Blocks” on page 20-42.

• Stateflow chart within a subsystem.

To specify distributed pipelining using the UI:

1 Right-click the block and select HDL Code > HDL Block Properties.

2 Set DistributedPipelining to on and click OK.

To enable distributed pipelining, on the command line, enter:

hdlset_param('path/to/block', 'DistributedPipelining', 'on')

To disable distributed pipelining, on the command line, enter:

hdlset_param('path/to/block', 'DistributedPipelining', 'off')
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Tip Output data might be in an invalid state initially if you insert pipeline
registers. To avoid test bench errors resulting from initial invalid samples,
disable output checking for those samples. For more information, see:

• “Use file I/O to read/write test bench data” on page 9-103

• IgnoreDataChecking

Limitations of Distributed Pipelining
The distributed pipelining optimization has the following limitations:

• Your pipelining results might not be optimal in hardware because the
operator latencies in your target hardware may differ from the estimated
operator latencies used by the distributed pipelining algorithm.

• The coder generates pipeline registers at the outputs of in the following
situations instead of distributing the registers to reduce critical path:

- A MATLAB Function block or Stateflow chart contains a matrix with a
statically unresolvable index.

- A Stateflow chart contains a state or local variable.

• The coder distributes pipeline registers around the following blocks instead
of within them:

- Model

- Sum (Cascade implementation)

- Product (Cascade implementation)

- MinMax (Cascade implementation)

- Upsample

- Downsample

- Rate Transition

- Zero-Order Hold

- Reciprocal Sqrt (RecipSqrtNewton implementation)

- Trigonometric Function (CORDIC Approximation)

15-57



15 Optimization

- Single Port RAM

- Dual Port RAM

- Simple Dual Port RAM

• If you enable distributed pipelining for a subsystem that contains blocks
in the following list, the coder issues an error message and terminates
code generation. To enable code generation to proceed, place these blocks
inside one or more subsystems within the original subsystem and disable
hierarchical distributed pipelining. The coder will distribute pipeline
registers around nested Subsystem blocks.

- Tapped Delay

- M-PSK Demodulator Baseband

- M-PSK Modulator Baseband

- QPSK Demodulator Baseband

- QPSK Modulator Baseband

- BPSK Demodulator Baseband

- BPSK Modulator Baseband

- PN Sequence Generator

- dspsigops/Repeat

- HDL Counter

- dspadpt3/LMS Filter

- dspsrcs4/Sine Wave

- commcnvcod2/Viterbi Decoder

- Triggered Subsystem

- Counter Limited

- Counter Free-Running

- Frame Conversion
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What is Hierarchical Distributed Pipelining?
Hierarchical distributed pipelining extends the scope of distributed pipelining
by moving delays across hierarchical boundaries within a subsystem while
preserving subsystem hierarchy.

If a subsystem in the hierarchy does not have distributed pipelining enabled,
the coder does not move delays across that subsystem.

For example, the following model has one level of subsystem hierarchy:
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The following diagram shows the model after applying hierarchical distributed
pipelining:

The subsystem now contains pipeline registers:
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Benefits of Hierarchical Distributed Pipelining
Hierarchical distributed pipelining enables distributed pipelining to operate
on a larger part of your design, which increases the chance that distributed
pipelining can further reduce your design’s critical path.

Hierarchical distributed pipelining preserves the original subsystem
hierarchy, which enables you to trace the changes that occur during pipelining
for nested Subsystem blocks.

Specify Hierarchical Distributed Pipelining
You can specify hierarchical distributed pipelining for your model.

To specify distributed pipelining using the UI:

1 Right-click the DUT subsystem and select HDL Code > HDL Coder
Properties.

2 In the HDL Code Generation > Global Settings pane, select the
Optimization tab.

3 Select Hierarchical distributed pipelining and click OK.

To enable hierarchical distributed pipelining, on the command line, enter:

hdlset_param('modelname', 'HierarchicalDistPipelining', 'on')
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To disable hierarchical distributed pipelining, on the command line, enter:

hdlset_param('modelname', 'HierarchicalDistPipelining', 'off')

Limitations of Hierarchical Distributed Pipelining
Hierarchical distributed pipelining must be disabled if your DUT subsystem
contains a model reference.

Distributed Pipelining Workflow
For an example that shows how to use distributed pipelining to reduce your
critical path, including delay insertion, see “Reduce Critical Path With
Distributed Pipelining” on page 15-67.

Selected Bibliography
Leiserson, C.E, and James B. Saxe. “Retiming Synchronous Circuitry.”
Algorithmica. Vol. 6, Number 1, 1991, pp. 5-35.
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Constrained Output Pipelining

In this section...

“What is Constrained Output Pipelining?” on page 15-63

“When To Use Constrained Output Pipelining” on page 15-63

“Requirements for Constrained Output Pipelining” on page 15-63

“Specify Constrained Output Pipelining” on page 15-64

“Limitations of Constrained Output Pipelining” on page 15-64

What is Constrained Output Pipelining?
Constrained output pipelining enables you to specify a nonnegative number of
registers at the outputs of a block. Distributed pipelining does not redistribute
registers you specify with constrained output pipelining.

The coder redistributes existing delays within your design to try to meet
the constraint. If the coder cannot meet the constraint with existing delays,
it reports the difference between the number of desired and actual output
registers in the timing report.

When To Use Constrained Output Pipelining
Use constrained output pipelining when you want to place registers at specific
locations in your design. This can enable you to optimize the speed of your
design.

For example, if you know where the critical path is in your design and want
to reduce it, you can use constrained output pipelining to place registers at
specific locations along the critical path.

Requirements for Constrained Output Pipelining
Your design must contain existing delays or registers. When there are fewer
registers than the coder needs to satisfy your constraint, the coder reports the
difference between the number of desired and actual output registers.

You can add registers to your design using input or output pipelining.
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Specify Constrained Output Pipelining
To specify constrained output pipelining for a block using the UI:

1 Right-click the block and select HDL Code > HDL Block Properties.

2 For ConstrainedOutputPipeline, enter the number of registers you
want at the output ports.

To specify constrained output pipelining, on the command line, enter:

hdlset_param(path_to_block,'ConstrainedOutputPipeline', number_of_output_re

For example, to constrain 6 registers at the output ports of a subsystem,
subsys, in your model, mymodel, enter:

hdlset_param('mymodel/subsys','ConstrainedOutputPipeline', 6)

Limitations of Constrained Output Pipelining
The coder does not constrain output pipeline register placement:

• Within a DUT subsystem, if the DUT contains a subsystem, model
reference, or model reference with black box implementation.

• At the outputs of any type of delay block or the top-level DUT subsystem.
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Pipeline Variables in the MATLAB Function Block

In this section...

“Using the HDL Block Properties Dialog Box” on page 15-65

“Using the Command Line” on page 15-65

“Limitations of Variable Pipelining” on page 15-65

You can insert a pipeline register at the output of a specific MATLAB variable.

Using the HDL Block Properties Dialog Box
To pipeline variables in a MATLAB Function block using the HDL Block
Properties dialog box:

1 Right-click the block and select HDL Code > HDL Block Properties.

2 For VariablesToPipeline, enter variable names for which you want the
coder to insert an output register. Separate variable names with a space.

Using the Command Line
To pipeline variables in a MATLAB Function block, set the
VariablesToPipeline block parameter using hdlset_param. Specify the list
of variables as a string, with spaces separating the variables.

For example, if you have a MATLAB Function block, myFn, with three
variables v1, v2, v3, you can insert pipeline registers at the outputs of the
three variables by entering:

hdlset_param('full/path/to/myFn','VariablesToPipeline', 'v1 v2 v3')

Limitations of Variable Pipelining
The coder cannot insert a pipeline register for a MATLAB variable if it is:

• In a conditional statement or loop.

• A persistent variable that maps to a state element, like a state register
or RAM.
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• An output of a function. For example, in the following code, you cannot use
variable pipelining to add a pipeline register for y:

function [y] = myfun(x)
y = x + 5;
end

• In a data feedback loop. For example, in the following code, the t and pvar
variables cannot be pipelined:

persistent pvar;
t = u + pvar;
pvar = t + v;
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Reduce Critical Path With Distributed Pipelining
This example shows how to reduce your critical path using distributed
pipelining, hierarchical distributed pipelining, output pipelining, and
constrained output pipelining.

Before you begin, make sure you have a synthesis tool set up. If you do not
have Xilinx ISE set up, you can follow this example, but you will not see
maximum clock period results in the Result subpane.

Open the simple_retiming model.

addpath(fullfile(docroot,'toolbox','hdlcoder','examples'));
simple_retiming

The top-level subsystem is the design under test (DUT). The DUT subsystem
contains one subsystem, subsys, and other blocks.
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The subsys block in DUT contains a copy of the three Product blocks in the
lower half of the diagram.
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Right-click the DUT subsystem and select HDL Code > HDL Workflow
Advisor to open the HDL Workflow Advisor.

In the Set Target > Set Target Device and Synthesis Tool pane, for
Synthesis tool, select Xilinx ISE.

The FPGA Synthesis and Analysis task appears.

On the left, expand the FPGA Synthesis and Analysis > Perform
Synthesis and P/R item.

Right-click Perform Logic Synthesis and select Run to Selected Task.

Minimum period: 36.042ns (Maximum Frequency: 27.745MHz)

When the coder finishes, you see the minimum clock period near the bottom of
the Results subpane.

Next, use distributed pipelining to improve your timing results.

In the model, right-click the DUT subsystem and select HDL Code > HDL
Block Properties.
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In the HDL Block Properties dialog box, for DistributedPipelining, select
on to enable distributed pipelining, and click OK.

In the DUT subsystem, right-click the subsys block, select HDL Code > HDL
Block Properties, and for DistributedPipelining, select on. Click OK.

In the HDL Workflow Advisor, in the HDL Code Generation > Set Code
Generation Options > Set Basic Options pane, enable Generate
optimization report. Click Apply.

In the HDL Workflow Advisor, right-click FPGA Synthesis and
Analysis > Perform Synthesis and P/R > Perform Logic Synthesis
and select Run to Selected Task.

Minimum period: 22.025ns (Maximum Frequency: 45.403MHz)

The maximum clock frequency has increased.

In the Code Generation Report, click Distributed Pipelining to open the
distributed pipelining report.

Under Generated Model, click the gm_simple_retiming link to open the
generated model. You can see that the coder redistributed the delay blocks.
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In the subsys block, there are no delay blocks because hierarchical distributed
pipelining is not enabled.

Next, use hierarchical distributed pipelining to further decrease the critical
path.
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In the HDL Workflow Advisor, in the HDL Code Generation > Set Code
Generation Options > Set Advanced Options > Optimization tab,
enable Hierarchical distributed pipelining and click Apply.

Right-click FPGA Synthesis and Analysis > Perform Synthesis and
P/R > Perform Logic Synthesis and select Run to Selected Task to
rerun synthesis.

Minimum period: 17.263ns (Maximum Frequency: 57.928MHz)

The maximum clock frequency has increased.

In the Code Generation Report, click Distributed Pipelining to open the
distributed pipelining report. Click the gm_simple_retiming link to open
the generated model.

The coder has distributed delays in the DUT and within the subsystem block.
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Now, use constrained output pipelining to further reduce the critical path.

In the simple_retiming model, open the subsys block within the DUT
subsystem.

Right-click the Product5 block, and select HDL Code > HDL Block
Properties.

For OutputPipeline, enter 1, and for ConstrainedOutputPipeline, enter
1. Click OK.

This adds a pipeline register and constrains it at the output of Product5.

In the HDL Workflow Advisor, right-click Set Target > Set Target Device
and Synthesis Tool and select Reset This Task.

Right-click FPGA Synthesis and Analysis > Perform Synthesis and
P/R > Perform Logic Synthesis and select Run to Selected Task to
rerun synthesis.

Minimum period: 10.266ns (Maximum Frequency: 97.410MHz)

The maximum clock frequency is now higher.
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Create and Use Code Generation Reports

Information Included in Code Generation Reports
The coder creates and displays an HDL Code Generation Report when you
select one or more of the following options:

GUI option makehdl Property

Generate traceability report Traceability, 'on'

Generate resource utilization
report

ResourceReport, 'on'

Generate optimization report OptimizationReport, 'on'

Generate model Web view GenerateWebview, 'on'

These options appear in the Code generation report panel of the HDL
Code Generation pane of the Configuration Parameters dialog box:

The HDL Code Generation Report is an HTML report that includes a
Summary and one or more of the following optional sections:

• Traceability Report

• Resource Utilization Report

• “Optimization Report” on page 16-7

• “Web View of Model in Code Generation Report” on page 16-28
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HDL Code Generation Report Summary
All reports include a Summary section. The Summary lists information about
the model, the DUT, the date of code generation, and top-level coder settings.
The Summary also lists model properties that have nondefault values.
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Resource Utilization Report
When you select Generate resource utilization report, the coder adds
a Resource Utilization Report section. The Resource Utilization Report
summarizes multipliers, adders/subtractors, and registers consumed by the
device under test (DUT). It also includes a detailed report on resources used
by each subsystem. The detailed report includes (wherever possible) links
back to corresponding blocks in your model.

The Resource Utilization Report is useful for analysis of the effects of
optimizations, such as resource sharing and streaming. A typical Resource
Utilization Report looks like this:
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Optimization Report
When you select Generate optimization report, the coder adds an
Optimization Report section, with two subsections:

• Distributed Pipelining: this subsection shows details of subsystem-level
distributed pipelining if any subsystems have the DistributedPipelining
option enabled. Details include comparative listings of registers and
flip-flops before and after applying the distributed pipelining transform.

• Streaming and Sharing: this subsection shows both summary and
detailed information about the subsystems for which sharing or streaming
is requested.

A typical Distributed Pipelining Report looks something like this:
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Hierarchical Distributed Pipelining in the Optimization
Report
If HierarchicalDistPipelining is on, the Optimization Report uses colored
sections to distinguish between different regions where the coder applies
hierarchical distributed pipelining:
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Traceability Report

In this section...

“Traceability Report Overview” on page 16-10

“Generating a Traceability Report from Configuration Parameters” on
page 16-14

“Generating a Traceability Report from the Command Line” on page 16-17

“Keeping the Report Current” on page 16-20

“Tracing from Code to Model” on page 16-20

“Tracing from Model to Code” on page 16-22

“Mapping Model Elements to Code Using the Traceability Report” on page
16-25

“Traceability Report Limitations” on page 16-27

Traceability Report Overview
Even a relatively small model can generate hundreds of lines of HDL code.
The coder provides the traceability report section to help you navigate more
easily between the generated code and your source model. When you enable
traceability, the coder creates and displays an HTML code generation report.
You can generate reports from the Configuration Parameters dialog box or
the command line. A typical traceability report looks something like this:
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The traceability report has several subsections:

• The Traceability Report lists Traceable Simulink Blocks / Stateflow
Objects / MATLAB Functions, providing a complete mapping between
model elements and code. The Eliminated / Virtual Blocks section of the
report accounts for blocks that are untraceable.

• The Generated Source Files table contains hyperlinks that let you view
generated HDL code in a MATLAB Web Browser window. This view of the
code includes hyperlinks that let you view the blocks or subsystems from
which the code was generated. You can click the names of source code
files generated from your model to view their contents in a MATLAB Web
Browser window. The report supports two types of linkage between the
model and generated code:

- Code-to-model hyperlinks within the displayed source code let you view
the blocks or subsystems from which the code was generated. Click the
hyperlinks to view the relevant blocks or subsystems in a Simulink
model window.

- Model-to-code linkage lets you view the generated code for any block in
the model. To highlight a block’s generated code in the HTML report,
right-click the block and select HDL Code > Navigate to Code.

Note If your model includes blocks that have requirements comments, you
can also render the comments as hyperlinked comments within the HTML
code generation report. See “Requirements Comments and Hyperlinks” on
page 16-35 for more information.

In the following sections, the mcombo example model illustrates stages in
the workflow for generating code generation reports from the Configuration
Parameters dialog box and from the command line.

To open the model, enter:

mcombo

The root-level mcombo model appears as follows:

16-12



Traceability Report

HDL Coder supports report generation for models, subsystems, blocks,
Stateflow charts, and MATLAB Function blocks. This example uses the combo
subsystem, shown in the following figure. The combo subsystem includes a
Stateflow chart, a MATLAB Function block, and a subsystem.
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Generating a Traceability Report from Configuration
Parameters
To generate a HDL Coder code generation report from the Configuration
Parameters dialog box:

1 Verify that the model is open.

2 Open the Configuration Parameters dialog box and navigate to the HDL
Code Generation pane.

3 To enable report generation, select Generate traceability report.

If your model includes blocks that have requirements comments, you can
also select Include requirements in block comments in the HDL
Code Generation > Global Settings > Coding style pane to render
the comments as hyperlinked comments in the HTML code generation
report. See “Requirements Comments and Hyperlinks” on page 16-35 for
more information.

4 Verify that Generate HDL for specifies the correct DUT for HDL code
generation. You can generate reports for the root-level model or for
subsystems, blocks, Stateflow charts, or MATLAB Function blocks.

5 Click Apply.
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6 Click Generate to initiate code and report generation.

When you select Generate traceability report, the coder generates
HTML report files as part of the code generation process. Report file
generation is the final phase of that process. As code generation proceeds,
the coder displays progress messages. The process completes with
messages similar to the following:

### Generating HTML files for traceability in slprj\hdl\mcombo\html directory ...

### HDL Code Generation Complete.
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When code generation is complete, the HTML report appears in a new
window:
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7 To view the different report sections or view the generated code files, click
the hyperlinks in the Contents pane of the report window.

Tip The coder writes the code generation report files to a folder in the
hdlsrc\html\ folder of the build folder. The top-level HTML report file is
named system_codegen_rpt.html, where system is the name of the model,
subsystem, or other component selected for code generation. However,
because the coder automatically opens this file after report generation, you
do not need to access the HTML files directly. Instead, navigate the report
using the links in the top-level window.

For more information on using the report you generate for tracing, see:

• “Tracing from Code to Model” on page 16-20

• “Tracing from Model to Code” on page 16-22

• “Mapping Model Elements to Code Using the Traceability Report” on page
16-25

Generating a Traceability Report from the Command
Line
To generate a HDL Coder code generation report from the command line:

1 Open your model by entering:

open_system('model_name');

2 Specify the desired device under test (DUT) for code generation by entering:

gcb = 'path_to_DUT';

You can generate reports for the root-level model or for subsystems, blocks,
Stateflow charts, or MATLAB Function blocks. If you do not specify a
subsystem, block, Stateflow chart, or MATLAB Function block, the coder
generates a report for the top-level model.

3 Enable the makehdl property Traceability by entering:
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makehdl(gcb,'Traceability','on');

When you enable traceability, the coder generates HTML report files as
part of the code generation process. Report file generation is the final phase
of that process. As code generation proceeds, the coder displays progress
messages. The process completes with messages similar to the following:

### Generating HTML files for traceability in slprj\hdl\mcombo\html directory ...

### HDL Code Generation Complete.
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When code generation is complete, the HTML report appears in a new
window:
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4 To view the different report sections or view the generated code files, click
the hyperlinks in the Contents pane of the report window.

Tip The coder writes the code generation report files to a folder in the
hdlsrc\html\ folder of the build folder. The top-level HTML report file is
named system_codegen_rpt.html, where system is the name of the model,
subsystem, or other component selected for code generation. However,
because the coder automatically opens this file after report generation, you
do not need to access the HTML files directly. Instead, navigate the report
using the links in the top-level window.

For more information on using the report you generate for tracing, see:

• “Tracing from Code to Model” on page 16-20

• “Tracing from Model to Code” on page 16-22

• “Mapping Model Elements to Code Using the Traceability Report” on page
16-25

Keeping the Report Current
If you generate a code generation report for a model, and subsequently make
changes to the model, the report might become invalid.

To keep your code generation report current, you should regenerate HDL code
and the report after modifying the source model.

If you close and then reopen a model without making changes, the report
remains valid.

Tracing from Code to Model
To trace from generated code to your model:

1 Generate code and open an HTML report for the desired DUT (see
“Generating a Traceability Report from Configuration Parameters” on page
16-14 or “Generating a Traceability Report from the Command Line” on
page 16-17).
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2 In the left pane of the HTML report window, click the desired file name in
the Generated Source Files table to view a source code file.

The following figure shows a view of the source file Gain_Subsystem.vhd.
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3 In the HTML report window, click a link to highlight the corresponding
source block.

For example, in the HTML report shown in the previous figure, you could
click the hyperlink for the Gain block (highlighted) to view that block in
the model. Clicking the hyperlink locates and displays the corresponding
block in the Simulink model window.

Tracing from Model to Code
Model-to-code traceability lets you select a component at any level of the
model, and view the code references to that component in the HTML code
generation report. You can select the following objects for tracing:

• Subsystem

• Simulink block

• MATLAB Function block

• Stateflow chart, or the following elements of a Stateflow chart:

- State

- Transition

- Truth table

- MATLAB function inside a chart

To trace a model component:
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1 Generate code and open an HTML report for the desired DUT (see
“Generating a Traceability Report from Configuration Parameters” on page
16-14 or “Generating a Traceability Report from the Command Line” on
page 16-17).

Tip If you have not generated code for the model, the coder disables the
HDL Code > Navigate to Code menu item.

2 In the model window, right-click the component and select HDL
Code > Navigate to Code.

3 Selecting Navigate to Code activates the HTML code generation report.
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The following figure shows the result of tracing the Stateflow chart within
the combo subsystem.
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In the right pane of the report, the highlighted tag <S3>/Chart indicates
the beginning of the code generated code for the chart.

In the left pane of the report, the total number of highlighted lines of code
(in this case, 1) appears next to the source file name combo.vhd.

The left pane of the report also contains Previous and Next buttons.
These buttons help you navigate through multiple instances of code
generated for a selected component. In this example, there is only one
instance, so the buttons are disabled.

Mapping Model Elements to Code Using the
Traceability Report
The Traceability Report section of the report provides a complete mapping
between model elements and code. The Traceability Report summarizes:

• Eliminated / virtual blocks: accounts for blocks that are untraceable
because they are not included in generated code

• Traceable model elements, including:

- Traceable Simulink blocks

- Traceable Stateflow objects

- Traceable MATLAB functions
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The following figure shows the beginning of a traceability report generated for
the combo subsystem of the mcombo model.
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Traceability Report Limitations
The following limitations apply to HDL Coder HTML code generation reports:

• If a block name in your model contains a single quote ('), code-to-model and
model-to-code traceability are disabled for that block.

• If an asterisk (*) in a block name in your model causes a name-mangling
ambiguity relative to other names in the model, code-to-model highlighting
and model-to-code highlighting are disabled for that block. This is most
likely to occur if an asterisk precedes or follows a slash (/) in a block name
or appears at the end of a block name.

• If a block name in your model contains the character ÿ (char(255)),
code-to-model highlighting and model-to-code highlighting are disabled
for that block.

• Some types of subsystems are not traceable from model to code at the
subsystem block level:

- Virtual subsystems

- Masked subsystems

- Nonvirtual subsystems for which code has been optimized away

If you cannot trace a subsystem at the subsystem level, you might be able
to trace individual blocks within the subsystem.
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Web View of Model in Code Generation Report

In this section...

“About Model Web View” on page 16-28

“Generate HTML Code Generation Report with Model Web View” on page
16-29

“Model Web View Limitations” on page 16-33

About Model Web View
To review and analyze the generated code, it is helpful to navigate between the
code and model. You can include a Web view of the model within the HTML
code generation report. You can then share your model and generated code
outside of the MATLAB environment. When you generate the report, the Web
view includes the block diagram attributes displayed in the Simulink Editor,
such as, block sorted execution order, signal properties, and port data types.

A Simulink Report Generator license is required to include a Web view of the
model in the code generation report.

Browser Requirements for Web View
Web view requires a Web browser that supports Scalable Vector Graphics
(SVG). Web view uses SVG to render and navigate models.

You can use the following Web browsers:

• Mozilla Firefox Version 1.5 or later, which has native support for SVG. To
download the Firefox browser, go to www.mozilla.com/.

• The Microsoft® Internet Explorer® Web browser with the Adobe® SVG
Viewer plug-in. To download the Adobe SVG Viewer plug-in, go to
www.adobe.com/svg/.

• Apple Safari Web browser
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Generate HTML Code Generation Report with Model
Web View
This example shows how to create an HTML code generation report which
includes a Web view of the model diagram.

1 Open the rtwdemo_mdlreftop model.

2 Open the Configuration Parameters dialog box or Model Explorer and
navigate to the Code Generation pane.

3 Specify ert.tlc for the System target file parameter.

4 Open the Code Generation > Report pane.

5 Select the following parameters:

• Create code generation report

• Open report automatically

• Code-to-model

• Model-to-code

• Generate model Web view

Note These settings specify only the top model, not referenced models.

6 Open the Configuration Parameters for the referenced model,
rtwdemo_mdlrefbot and perform steps 3–5.

7 Save the models, rtwdemo_mdlreftop and rtwdemo_mdlrefbot.

8 From the top model diagram, press Ctrl+B. After building the model and
generating code, the code generation report for the top model opens in a
MATLAB Web browser.

9 In the left navigation pane, select a source code file. The corresponding source
code is displayed in the right pane and includes hyperlinks.
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10 Click a link in the code. The model Web view displays and highlights the
corresponding block in the model.

11 To highlight the generated code for a referenced model block in your model,
click CounterB. The corresponding code is highlighted in the source code pane.
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Note You cannot open the referenced model diagram in the Web view by
double-clicking the referenced model block in the top model.

12 To open the code generation report for a referenced model, in the
left navigation pane, below Referenced Models, click the link,
rtwdemo_mdlrefbot. The source files for the referenced model are displayed
along with the Web view of the referenced model.

13 To go back to the code generation report for the top model, at the top of
the left navigation pane, click the Back button until the top model’s report
is displayed.

1 Open the mcombo model.

2 Open the Configuration Parameters dialog box or Model Explorer and
navigate to the HDL Code Generation pane.

3 Under Code generation report, select Generate model Web view.

4 Click the Generate button.

After building the model and generating code, the code generation report
opens in a MATLAB Web browser.

5 In the left navigation pane, select a source code file. The corresponding source
code is displayed in the right pane and includes hyperlinks.
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6 Click a link in the code. The model Web view displays and highlights the
corresponding block in the model.

7 To highlight the generated code for a block in your model, click the block. The
corresponding code is highlighted in the source code pane.

8 To go back to the code generation report for the top model, at the top of
the left navigation pane, click the Back button until the top model’s report
is displayed.
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For more information about exploring a model in a Web view, see “Navigate
Web Views” in the Simulink Report Generator documentation.

For more information about navigating between the generated code and the
model diagram, see :

• “Trace Model Objects to Generated Code”

• “Trace Code to Model Objects Using Hyperlinks”

Model Web View Limitations
The HTML code generation report includes the following limitations when
using the model Web view:

• Code is not generated for virtual blocks. In the model Web view of the code
generation report, when tracing between the model and the code, when you
click a virtual block, it is highlighted yellow.

• In the model Web view, you cannot open a referenced model diagram by
double-clicking the referenced model block in the top model. Instead, open
the code generation report for the referenced model by clicking a link under
Referenced Models in the left navigation pane.

• Stateflow truth tables, events, and links to library charts are not supported
in the model Web view.

• Searching in the code generation report does not find or highlight text in
the model Web view.

• If you navigate from the actual model diagram (not the model Web view
in the report), to the source code in the HTML code generation report, the
model Web view is disabled and not visible. To enable the model Web view,
open the report again, see “Open Code Generation Report”.

• For a subsystem build, the traceability hyperlinks of the root level inport
and outport blocks are disabled.

• “Traceability Limitations” that apply to tracing between the code and the
actual model diagram.
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Generate Code with Annotations or Comments

In this section...

“Simulink Annotations” on page 16-34

“Text Comments” on page 16-34

“Requirements Comments and Hyperlinks” on page 16-35

The following sections describe how to use the coder to add text annotations
to generated code, in the form of model annotations, text comments or
requirements comments.

Simulink Annotations
You can enter text directly on the block diagram as Simulink annotations.
The coder renders text from Simulink annotations as plain text comments in
generated code. The comments are generated at the same level in the model
hierarchy as the subsystem(s) that contain the annotations, as if they were
Simulink blocks.

See “Annotate Diagrams” in the Simulink documentation for general
information on annotations.

Text Comments
You can enter text comments at any level of the model by placing a DocBlock
at the desired level and entering text comments. The coder renders text from
the DocBlock in generated code as plain text comments. The comments are
generated at the same level in the model hierarchy as the subsystem that
contains the DocBlock.

Set the Document type parameter of the DocBlock to Text. The coder does
not support the HTML or RTF options.

See DocBlock in the Simulink documentation for general information on the
DocBlock.
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Requirements Comments and Hyperlinks
You can assign requirement comments to blocks.

If your model includes requirements comments, you can choose to render the
comments in one of the following formats:

• Text comments in generated code: To include requirements as text
comments in code, use the defaults for Include requirements in
block comments (on) and Generate traceability report (off) in the
Configuration Parameters dialog box.

If you generate code from the command line, set the Traceability and
RequirementComments properties:

makehdl(gcb,'Traceability','off','RequirementComments','on');

The following figure highlights text requirements comments generated for
a Gain block from the mcombo model.

• Hyperlinked comments: To include requirements comments as hyperlinked
comments in an HTML code generation report, select both Generate
traceability report and Include requirements in block comments in
the Configuration Parameters dialog box.
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If you generate code from the command line, set the Traceability and
RequirementComments properties:

makehdl(gcb,'Traceability','on','RequirementComments','on');

The comments include links back to a requirements document associated
with the block and to the block within the original model. For example, the
following figure shows two requirements links assigned to a Gain block.
The links point to sections of a text requirements file.

The following figure shows hyperlinked requirements comments generated
for the Gain block.
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Check Your Model for HDL Compatibility
The HDL compatibility checker lets you check whether a subsystem or model
is compatible with HDL code generation. You can run the compatibility
checker from the command line or from the GUI.

To run the compatibility checker from the command line, use the checkhdl
function. The syntax of the function is

checkhdl('system')

where system is the device under test (DUT), typically a subsystem within
the current model.

To run the compatibility checker from the GUI:

1 Open the Configuration Parameters dialog box or the Model Explorer.
Select the HDL Code Generation pane.

2 Select the subsystem you want to check from the Generate HDL for list.

3 Click the Run Compatibility Checker button.

The HDL compatibility checker examines the specified system for
compatibility problems, such as use of unsupported blocks, illegal data
type usage, etc. The HDL compatibility checker generates an HDL Code
Generation Check Report, which is stored in the target folder. The report file
naming convention is system_report.html, where system is the name of the
subsystem or model passed to the HDL compatibility checker.

The HDL Code Generation Check Report is displayed in a MATLAB Web
Browser window. Each entry in the HDL Code Generation Check Report is
hyperlinked to the block or subsystem that caused the problem. When you
click the hyperlink, the block of interest highlights and displays (provided
that the model referenced by the report is open).
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The following figure shows an HDL Code Generation Check Report that was
generated for a subsystem with a Product block that was configured with a
mixture of double and integer port data types. This configuration is legal in a
model, but incompatible with HDL code generation.

When you click the hyperlink in the left column, the subsystem containing
the offending block opens. The block of interest is highlighted, as shown in
the following figure.
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The following figure shows an HDL Code Generation Check Report that was
generated for a subsystem that passed its compatibility checks. In this case,
the report contains only a hyperlink to the subsystem that was checked.
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Create a Supported Blocks Library
The hdllib.m utility creates a library of blocks that are currently supported
for HDL code generation. The block library, hdlsupported, affords quick
access to supported blocks. By constructing models using blocks from this
library, your models will be compatible with HDL code generation.

The set of supported blocks will change in future releases of the coder. To
keep the hdlsupported library current, you should rebuild the library each
time you install a new release. To create the library:

1 Type the following at the MATLAB prompt:

hdllib

hdllib starts generation of the hdlsupported library. Many libraries load
during the creation of the hdlsupported library. When hdllib completes
generation of the library, it does not unload these libraries.

2 After the library is generated, you must save it to a folder of your choice.
You should retain the file name hdlsupported, because this document
refers to the supported blocks library by that name.

The following figure shows the top-level view of the hdlsupported library.
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Parameter settings for blocks in the hdlsupported library might differ from
corresponding blocks in other libraries.

For detailed information about supported blocks and HDL block
implementations, see “Set and View HDL Block Parameters” on page 10-2.
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Trace Code Using the Mapping File

Note This section refers to generated VHDL entities or Verilog modules
generically as “entities.”

A mapping file is a text report file generated by makehdl. Mapping files
are generated as an aid in tracing generated HDL entities back to the
corresponding systems in the model.

A mapping file shows the relationship between systems in the model and the
VHDL entities or Verilog modules that were generated from them. A mapping
file entry has the form

path --> HDL_name

where path is the full path to a system in the model and HDL_name is the
name of the VHDL entity or Verilog module that was generated from that
system. The mapping file contains one entry per line.

In simple cases, the mapping file may contain only one entry. For example,
the symmetric_fir subsystem of the sfir_fixed model generates the
following mapping file:

sfir_fixed/symmetric_fir --> symmetric_fir

Mapping files are more useful when HDL code is generated from complex
models where multiple subsystems generate many entities, and in cases where
conflicts between identically named subsystems are resolved by the coder.

If a subsystem name is unique within the model, the coder simply uses the
subsystem name as the generated entity name. Where identically named
subsystems are encountered, the coder attempts to resolve the conflict
by appending a postfix string (by default, '_entity') to the conflicting
subsystem. If subsequently generated entity names conflict in turn with this
name, incremental numerals (1,2,3,...n) are appended.

As an example, consider the model shown in the following figure. The
top-level model contains subsystems named A nested to three levels.
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When code is generated for the top-level subsystem A, makehdl works its way
up from the deepest level of the model hierarchy, generating unique entity
names for each subsystem.

makehdl('mapping_file_triple_nested_subsys/A')
### Working on mapping_file_triple_nested_subsys/A/A/A as A_entity1.vhd
### Working on mapping_file_triple_nested_subsys/A/A as A_entity2.vhd
### Working on mapping_file_triple_nested_subsys/A as A.vhd

### HDL Code Generation Complete.

The following example lists the contents of the resultant mapping file.

mapping_file_triple_nested_subsys/A/A/A --> A_entity1
mapping_file_triple_nested_subsys/A/A --> A_entity2
mapping_file_triple_nested_subsys/A --> A

Given this information, you can trace a generated entity back to its
corresponding subsystem by using the open_system command, for example:

open_system('mapping_file_triple_nested_subsys/A/A')

Each generated entity file also contains the path for its corresponding
subsystem in the header comments at the top of the file, as in the following
code excerpt.

-- Module: A_entity2
-- Simulink Path: mapping_file_triple_nested_subsys/A
-- Hierarchy Level: 0
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Add or Remove the HDL Configuration Component

In this section...

“What Is the HDL Configuration Component?” on page 16-46

“Adding the HDL Coder Configuration Component To a Model” on page
16-46

“Removing the HDL Coder Configuration Component From a Model” on
page 16-47

What Is the HDL Configuration Component?
The HDL configuration component is an internal data structure that the
coder creates and attaches to a model. This component lets you view the HDL
Code Generation pane in the Configurations Parameters dialog box and set
HDL code generation options. Normally, you do not need to interact with the
HDL configuration component. However, there are situations where you
might want to add or remove the HDL configuration component:

• A model that was created on a system that did not have HDL Coder
installed does not have the HDL configuration component attached. In this
case, you might want to add the HDL configuration component to the model.

• If a previous user removed the HDL configuration component, you might
want to add the component back to the model.

• If a model will be running on some systems that have HDL Coder installed,
and on other systems that do not, you might want to keep the model
consistent between both environments. If so, you might want to remove the
HDL configuration component from the model.

Adding the HDL Coder Configuration Component To
a Model
To add the HDL Coder configuration component to a model:

1 In the Simulink Editor, select Code > HDL Code.

2 Select Add HDL Coder Configuration to Model.
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3 Save the model.

Removing the HDL Coder Configuration Component
From a Model
To remove the HDL Coder configuration component from a model:

1 In the Simulink Editor, select Code > HDL Code, and select Remove
HDL Coder Configuration from Model.

The coder displays a confirmation message.

2 Click Yes to confirm that you want to remove the HDL Coder configuration
component.

3 Save the model.

16-47



16 Code Generation Reports, HDL Compatibility Checker, Block Support Library, and Code Annotation

16-48



17

HDL Coding Standards

• “HDL Coding Standard Report” on page 17-2

• “HDL Coding Standards” on page 17-4

• “Generate an HDL Coding Standard Report” on page 17-5

• “HDL Coding Standard Rules” on page 17-7

• “Generate an HDL Lint Tool Script” on page 17-11



17 HDL Coding Standards

HDL Coding Standard Report
The HDL coding standard report shows how your generated HDL code
conforms to an industry coding standard you select when generating code.

The report can contain errors, warnings, and messages. Errors and warnings
in the report link to elements in your original design so you can fix problems,
then regenerate code. Messages show where the coder automatically corrected
the code to conform to the coding standard.

The report also lists the rules in the coding standard with which the generated
code complies. You can inspect the report to see which coding standard rules
the coder checks.

To learn more about HDL coding standards, see “HDL Coding Standards”
on page 17-4.

Rule Summary
The rule summary section shows the total numbers of errors, warnings, and
messages, and lists the corresponding rules. Each rule shown in the summary
links to the rule in the detailed rule hierarchy section.
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Rule Hierarchy
The rule hierarchy section lists every rule the coder checks, within three
categories:

• Basic coding practices, including rules for names, clocks, and reset.

• RTL description techniques, including rules for combinatorial and
synchronous logic, operators, and finite state machines.

• RTL design methodology guidelines, including rules for ports, function
libraries, files, and comments.

If your HDL code does not conform to a specific rule, the rule shows either the
automated correction, or a link to the original design element causing the error
or warning. When you click a link, the design opens with the design element
highlighted. You can fix the problem in your design, then regenerate code.

How To Fix Warnings and Errors
To learn more about warnings and errors you can fix by modifying your
design, see “HDL Coding Standard Rules” on page 17-7.
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HDL Coding Standards
HDL coding standards give language-specific code usage rules to help you
generate more efficient, portable, and synthesizable HDL code, such as coding
guidelines for:

• Names

• Ports, reset and clocks

• Combinatorial and synchronous logic

• Finite state machines

• Conditional statements and operators

The coder can generate HDL code that follows industry standard rules, and
can generate a report that shows how well your generated HDL code conforms
to industry coding standards. The coder can also generate third-party lint tool
scripts to use to check your generated HDL code.

To learn more about the HDL coding standard report, see “HDL Coding
Standard Report” on page 17-2.
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Generate an HDL Coding Standard Report

In this section...

“Using the HDL Workflow Advisor” on page 17-5

“Using the Command Line” on page 17-5

To learn more about the HDL coding standard report, see “HDL Coding
Standard Report” on page 17-2.

Using the HDL Workflow Advisor
To generate an HDL coding standard report using the HDL Workflow Advisor:

1 In the HDL Code Generation task, in Set Code Generation Options >
Set Advanced Options, select the Coding style tab.

2 For HDL coding standard, select Industry and click Apply.

After you generate code, the message window shows a link to the HTML
compliance report. To open the report, click the report link.

Using the Command Line
To generate an HDL coding standard report using the command line
interface, set the HDLCodingStandard property to Industry using makehdl
or hdlset_param.

For example, to generate HDL code and an HDL coding standard report for a
subsystem, sfir_fixed/symmetric_sfir, enter the following command:

makehdl('sfir_fixed/symmetric_fir','HDLCodingStandard','Industry')

### Generating HDL for 'sfir_fixed/symmetric_fir'.
### Starting HDL check.
### HDL check for 'sfir_fixed' complete with 0 errors, 0 warnings, and 0 me
### Begin VHDL Code Generation for 'sfir_fixed'.
### Working on sfir_fixed/symmetric_fir as hdlsrc\sfir_fixed\symmetric_fir.
### Industry Compliance report with 4 errors, 18 warnings, 5 messages.
### Generating Industry Compliance Report symmetric_fir_Industry_report.htm
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### Generating SpyGlass script file sfir_fixed_symmetric_fir_spyglass.prj
### HDL code generation complete.

To open the report, click the report link.
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HDL Coding Standard Rules
When you generate an HDL coding standard report, the following industry
standard rules may appear. You can fix errors or warnings related to these
rules by updating your design.

Rule /
Severity

Message Problem How to fix

1.A.A.2
Message

Identifiers and
names should follow
recommended naming
convention.

A name in the design
does not start with a
letter, or contains a
character other than
a number, letter, or
underscore.

Update the names in
your design so that
they start with a letter
of the alphabet (a-z,
A-Z), and contain only
alphanumeric characters
(a-z, A-Z, 0-9) and
underscores (_).

1.A.A.3
Message

Keywords in
Verilog-HDL(IEEE1364),
and keywords in
VHDL(IEEE1076.X) must
not be used.

There are Verilog or
VHDL keywords within
the names in your design.

Update the names in
your design so that they
do not contain Verilog or
VHDL keywords.

1.A.A.5
Error

Do not use case
variants of names
in the same scope.
(Verilog)

Do not use names
that differ in case
only, within the same
scope. (VHDL)

Two or more names in
your design, within the
same scope, are identical
except for case.

For example, the names
foo and Foo cannot be in
the same scope.

Update the names in
your design so that no
two names within the
same scope differ only in
case.

1.A.A.9
Warning

Top-level
module/entity and
port names should be
less than or equal
to 16 characters in
length and not be
mixed-case.

A top-level module,
entity, or port name
in the generated code
is longer than 16
characters, or uses
letters with mixed case.

Update the indicated
name in your design so
that it is less than or
equal to 16 characters
long, and all letters are
lowercase, or all letters
are uppercase.
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Rule /
Severity

Message Problem How to fix

1.A.B.1
Error

Module and Instance
names should be
between 2 and 32
characters in length.
(Verilog)

Entity names and
instance names should
be between 2 and 32
characters in length.
(VHDL)

A module, instance,
or entity name in the
generated code is less
than 2 characters long, or
more than 32 characters
long.

Update function names
or subsystem names in
your design to be between
2 and 32 characters long.

1.A.C.3
Error

Signal names, port
names, parameter
names, define names
and function names
should be between 2
and 40 characters in
length. (Verilog)

Signal names,
variable names, type
names, label names
and function names
should be between 2
and 40 characters in
length. (VHDL)

A signal, port,
parameter, define, or
function name in the
generated code is less
than 2 characters long, or
more than 40 characters
long.

Update the indicated
name in your design so
that it is between 2 and
40 characters long.
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Rule /
Severity

Message Problem How to fix

1.A.D.1
Warning

Include files must
have extensions
that match ".h",
".vh",".inc", and
".h", ".inc", "ht",
".tsk" for testbench.
(Verilog)

Package file name
should be followed by
"pac.vhd". (VHDL)

The filename extension
of an include file is not
one of the standard
extensions.

Set the Verilog file
extension or VHDL file
extension to one of the
standard extensions.

Use the Verilog
file extension and
VHDL file extension
option in the HDL
Workflow Advisor, or the
VerilogFileExtension
and VHDLFileExtension
properties from the
command line.

2.C.D.1
Error

Do not specify
flip-flop (or RAM)
initial value using
initial construct.

The generated HDL code
for your design contains
an unsynthesizable
initial statement.

Disable the Initialize
block RAM or Initialize
all RAM blocks option
in the HDL Workflow
Advisor.

2.G.C.1c
Message

Chain of if...else
if constructs must
not be exceed default
number of levels.
(Verilog)The chain of
"if-elsif" construct
must not be longer
than default number
of levels. (VHDL)

The generated HDL code
contains an if-elseif
statement with more
than 7 branches.

Modify if-elseif
statements in your
MATLAB code so that
the number of branches
is 7 or fewer.

For example, the
following if-elseif
pseudocode contains 3
branches:

if ...
elseif ...
elseif ...
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Rule /
Severity

Message Problem How to fix

else

3.B.D.1
Error

Non-integer type used
in the declaration
of a generic may be
unsynthesizable.

The generated HDL code
contains a non-integer
data type.

Modify your design to use
fixed-point data types.
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Generate an HDL Lint Tool Script
You can generate a lint tool script to use with a third-party lint tool to check
your generated HDL code. The coder can generate the following lint tool
script file formats:

• Leda

• SpyGlass

• Custom

You can further customize the script with initialization, termination, and
command strings.

How To Generate an HDL Lint Tool Script

Using the Configuration Parameters Dialog Box
1 In the Configuration Parameters dialog box, select HDL Code
Generation > EDA Tool Scripts.

2 Select the Lint script option.

3 For Choose lint tool, select SpyGlass, Leda, or Custom.

4 Enter text to customize the Lint initialization, Lint command, and
Lint termination strings.

After you generate code, the message window shows a link to the lint tool
script.

Using the Command Line
To generate an HDL lint tool script from the command line, set the
HDLLintTool parameter to Leda, SpyGlass, or Custom using makehdl or
hdlset_param.

To disable HDL lint tool script generation, set the HDLLintTool parameter
to None.
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For example, to generate HDL code and a SpyGlass lint script for a DUT
subsystem, sfir_fixed\symmetric_fir, enter the following:

makehdl('sfir_fixed/symmetric_fir','HDLLintTool','SpyGlass')

After you generate code, the message window shows a link to the lint tool
script.

To generate an HDL lint tool script with custom initialization, termination,
and command strings, use the HDLLintTool, HDLLintInit, HDLLintTerm,
and HDLLintCmd parameters.

For example, you can use the following command to generate a custom Leda
lint script for a DUT subsystem, sfir_fixed\symmetric_fir, with custom
initialization, termination, and command strings:

makehdl('sfir_fixed/symmetric_fir','HDLLintTool','Leda',
'HDLLintInit','myInitialization','HDLLintTerm',
'myTermination','HDLLintCmd','myCommand')
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Generate Black Box Interface for Subsystem

In this section...

“What Is a Black Box Interface?” on page 18-2

“Generate a Black Box Interface for a Subsystem” on page 18-2

“Generate Code for a Black Box Subsystem Implementation” on page 18-6

“Restriction for Multirate DUTs” on page 18-7

What Is a Black Box Interface?
A black box interface for a subsystem is a generated VHDL component or
Verilog module that includes only the HDL input and output port definitions
for the subsystem. By generating such a component, you can use a subsystem
in your model to generate an interface to existing manually written HDL code,
third-party IP, or other code generated by HDL Coder.

The black box implementation is available only for subsystem blocks below
the level of the DUT. Virtual and atomic subsystem blocks of custom libraries
that are below the level of the DUT also work with black box implementations.

Generate a Black Box Interface for a Subsystem
To generate the interface, select the BlackBox implementation for one or more
Subsystem blocks. Consider the following model that contains a subsystem
top, which is the device under test.
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The subsystem top contains two lower-level subsystems:

Suppose that you want to generate HDL code from top, with a black box
interface from the Interface subsystem. To specify a black box interface:

1 Right-click the Interface subsystem and select HDL Code > HDL Block
Properties.

The HDL Properties dialog box appears.
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2 Set Architecture to BlackBox.

The following parameters are available for the black box implementation:

18-4



Generate Black Box Interface for Subsystem

18-5



18 Interfacing Subsystems and Models to HDL Code

The HDL block parameters available for the black box implementation
enable you to customize the generated interface. See “Customize the
Generated Interface” on page 18-63 for information about these parameters.

3 Change parameters as desired, and click Apply.

4 Click OK to close the HDL Properties dialog box.

Generate Code for a Black Box Subsystem
Implementation
When you generate code for the DUT in the ex_blackbox_subsys model, the
following messages appear:

>> makehdl('ex_blackbox_subsys/top')

### Generating HDL for 'ex_blackbox_subsys/top'

### Starting HDL Check.

### HDL Check Complete with 0 errors, 0 warnings and 0 messages.

### Begin VHDL Code Generation

### Working on ex_blackbox_subsys/top/gencode as hdlsrc\gencode.vhd

### Working on ex_blackbox_subsys/top as hdlsrc\top.vhd

### HDL Code Generation Complete.

In the progress messages, observe that the gencode subsystem generates a
separate file, gencode.vhd, for its VHDL entity definition. The Interface
subsystem does not generate such a file. The interface code for this subsystem
is in top.vhd, generated from ex_blackbox_subsys/top. The following code
listing shows the component definition and instantiation generated for the
Interface subsystem.

COMPONENT Interface

PORT( clk : IN std_logic;

clk_enable : IN std_logic;

reset : IN std_logic;

In1 : IN std_logic_vector(7 DOWNTO 0); -- uint8

In2 : IN std_logic_vector(15 DOWNTO 0); -- uint16

In3 : IN std_logic_vector(31 DOWNTO 0); -- uint32

Out1 : OUT std_logic_vector(31 DOWNTO 0) -- uint32

);

END COMPONENT;
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...

u_Interface : Interface

PORT MAP( clk => clk,

clk_enable => enb,

reset => reset,

In1 => gencode_out1, -- uint8

In2 => gencode_out2, -- uint16

In3 => gencode_out3, -- uint32

Out1 => Interface_out1 -- uint32

);

enb <= clk_enable;

ce_out <= enb;

Out1 <= Interface_out1;

By default, the black box interface generated for subsystems includes clock,
clock enable, and reset ports. “Customize the Generated Interface” on page
18-63 describes how you can rename or suppress generation of these signals,
and customize other aspects of the generated interface.

Restriction for Multirate DUTs
Note that you can generate at most one clock port and one clock enable port.
You cannot generate code from a multirate DUT that contains a subsystem
with a black box interface.

If you want to generate code for a multirate, multiclock DUT that includes
a submodel, use model referencing. For details, see “Model Referencing for
HDL Code Generation” on page 18-18.
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Generate Reusable Code for Atomic Subsystems

In this section...

“Generate Reusable Code for Identical Atomic Subsystems” on page 18-8

“Generate Reusable Code for Atomic Subsystems with Tunable Mask
Parameters” on page 18-12

By default, the coder detects and generates reusable code for atomic
subsystems that are identical, or identical except for their mask parameter
values, at any level of the model hierarchy.

By generating reusable code, you can eliminate the creation of redundant
source code files generated for identical subsystems. Each subsystem is
configured as an atomic subsystem by selecting Treat as atomic unit in the
Subsystem block dialog box.

Generate Reusable Code for Identical Atomic
Subsystems
An example of a subsystem containing identical subsystems is shown in the
following figures.
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The DUT subsystem contains three subsystems that are identical except
for their subsystem names.

By default, the coder generates a single source file, vsum.vhd, that provides
the required entity and architecture definition for the vsum component. The
listing below shows the makehdl command and its progress messages.

>> makehdl('simplevectorsum_3atomics/DUT')

### Generating HDL for 'simplevectorsum_3atomics/DUT'

### Starting HDL Check.

### HDL Check Complete with 0 errors, 0 warnings and 0 messages.
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### Begin VHDL Code Generation

### Working on simplevectorsum_3atomics/DUT/vsum as hdlsrc\vsum.vhd

### Working on simplevectorsum_3atomics/DUT as hdlsrc\DUT.vhd

### Generating package file hdlsrc\DUT_pkg.vhd

### HDL Code Generation Complete.

The file generated for the DUT subsystem (DUT.vhd) contains three
instantiations of the vsum component, as shown in the following listing.

ARCHITECTURE rtl OF DUT IS

-- Component Declarations

COMPONENT vsum

PORT( In1 : IN vector_of_std_logic_vector16(0 TO 9); -- int16 [10]

Out1 : OUT std_logic_vector(19 DOWNTO 0) -- sfix20

);

END COMPONENT;

-- Component Configuration Statements

FOR ALL : vsum

USE ENTITY work.vsum(rtl);

-- Signals

SIGNAL vsum_out1 : std_logic_vector(19 DOWNTO 0); -- ufix20

SIGNAL vsum1_out1 : std_logic_vector(19 DOWNTO 0); -- ufix20

SIGNAL vsum2_out1 :std_logic_vector(19 DOWNTO 0); -- ufix20

BEGIN

u_vsum : vsum

PORT MAP( In1 => In1, -- int16 [10]

Out1 => vsum_out1 -- sfix20

);

u_vsum1 : vsum

PORT MAP( In1 => In2, -- int16 [10]

Out1 => vsum1_out1 -- sfix20

);

u_vsum2 : vsum
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PORT MAP( In1 => In3, -- int16 [10]

Out1 => vsum2_out1 -- sfix20

);

Out1 <= vsum_out1;

Out2 <= vsum1_out1;

Out3 <= vsum2_out1;

END rtl;

The HandleAtomicSubsystem property for makehdl lets you control generation
of reusable code for atomic subsystems. HandleAtomicSubsystem is enabled
by default. If you do not wish to generate reusable code for identical atomic
subsystems, you can disable HandleAtomicSubsystem in your makehdl
command, as shown in the following example.

makehdl(simplevectorsum_3atomics/DUT,'HandleAtomicSubsystem','off')

Generate Reusable Code for Atomic Subsystems with
Tunable Mask Parameters
The following figures show an example of a DUT subsystem containing atomic
subsystems that are identical except for their tunable mask parameter values.
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In mgenerics/DUT, the gain modules are subsystems with gain values
represented by tunable mask parameters. Gain values are 0.6 for
Gain_Module1, 2.4 for Gain_Module2, and 6.8 for Gain_Module3.

When you enable Generate parameterized HDL code from masked
subsystem, the coder generates a single source file, Gain_Module1.v. This
file provides the module definition for the gain module component. The listing
below shows the makehdl command and its progress messages.

>> makehdl('mgenerics/DUT','TargetLanguage','Verilog')

### Generating HDL for 'mgenerics/DUT'

### Starting HDL Check.

### HDL Check Complete with 0 errors, 0 warnings and 0 messages.

### Begin Verilog Code Generation

### Working on mgenerics/DUT/Gain_Module1 as hdl_prj\hdlsrc\Gain_Module1.v

### Working on mgenerics/DUT as hdl_prj\hdlsrc\DUT.v

### Generating HTML files for code generation report

in s:\mask2generics_example\hdl_prj\hdlsrc\html\mgenerics directory ...

### HDL Code Generation Complete.

The file generated for the DUT subsystem (DUT.v) contains three
instantiations of the Gain_Module1 component, as shown in the following
listing.

module DUT

(

In1,

In2,

In3,

Out1,

Out2,

Out3

);

input signed [15:0] In1; // sfix16_En12
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input signed [15:0] In2; // sfix16_En12

input signed [15:0] In3; // sfix16_En12

output signed [31:0] Out1; // sfix32_En24

output signed [31:0] Out2; // sfix32_En24

output signed [31:0] Out3; // sfix32_En24

wire signed [31:0] Gain_Module1_out1; // sfix32_En24

wire signed [31:0] Gain_Module2_out1; // sfix32_En24

wire signed [31:0] Gain_Module3_out1; // sfix32_En24

// <S1>/Gain_Module1

Gain_Module1 # (.param_gain(2458)

)

u_Gain_Module1 (.In1(In1), // sfix16_En12

.Out1(Gain_Module1_out1) // sfix32_En24

);

assign Out1 = Gain_Module1_out1;

// <S1>/Gain_Module2

Gain_Module1 # (.param_gain(9830)

)

u_Gain_Module2 (.In1(In2), // sfix16_En12

.Out1(Gain_Module2_out1) // sfix32_En24

);

assign Out2 = Gain_Module2_out1;

// <S1>/Gain_Module3

Gain_Module1 # (.param_gain(27853)

)

u_Gain_Module3 (.In1(In3), // sfix16_En12

.Out1(Gain_Module3_out1) // sfix32_En24

);

assign Out3 = Gain_Module3_out1;

endmodule // DUT
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The file generated for the Gain_Module1 block contains a Verilog parameter,
param_gain, as shown in the following listing.

module Gain_Module1
(
In1,
Out1

);

input signed [15:0] In1; // sfix16_En12
output signed [31:0] Out1; // sfix32_En24

parameter signed [15:0] param_gain = 2458; // sfix16_En12

wire signed [15:0] kconst; // sfix16_En12
wire signed [31:0] Gain_out1; // sfix32_En24

assign kconst = param_gain;

// <S2>/Gain
assign Gain_out1 = In1 * kconst;

assign Out1 = Gain_out1;

endmodule // Gain_Module1

The MaskParameterAsGeneric property for makehdl lets you control
generation of reusable code for atomic subsystems. MaskParameterAsGeneric
is disabled by default. If you wish to generate reusable code for identical
atomic subsystems, you can enable MaskParameterAsGeneric in your
makehdl command, as shown in the following example.

makehdl(mgenerics/DUT,'MaskParameterAsGeneric','on')

See also “Generate parameterized HDL code from masked subsystem” on
page 9-75.
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Model Reference Code Generation Options
Simulink model referencing enables you to include other models in your DUT
subsystem using the Model block.

When you generate HDL code, you can specify the Model block implementation
to:

• Generate HDL code for the referenced model and nested submodels.

• Instantiate an HDL wrapper, or black box interface, for legacy or external
HDL code.

If you specify a black box interface, the coder does not attempt to generate
HDL code for the submodel.

To learn how to generate HDL for a referenced model, see “Model Referencing
for HDL Code Generation” on page 18-18.

To learn how to generate a black box interface for a referenced model, see
“Generate Black Box Interface for Referenced Model” on page 18-21.
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Model Referencing for HDL Code Generation

In this section...

“Benefits of Model Referencing for Code Generation” on page 18-18

“How To Generate Code for a Referenced Model” on page 18-18

“Limitations for Model Reference Code Generation” on page 18-19

Benefits of Model Referencing for Code Generation
Model referencing in your DUT subsystem enables you to:

• Partition a large design into a hierarchy of smaller designs for reuse,
modular development, and accelerated simulation.

• Incrementally generate and test code.

The coder incrementally generates code for referenced models according
to the Configuration Parameters dialog box > Model Referencing
pane > Rebuild options.

However, the coder treats If any changes detected and If any changes
in known dependencies detected as the same. For example, if you set
Rebuild to either If any changes detected or If any changes in known
dependencies detected, the coder regenerates code for referenced models
only when the referenced models have changed.

How To Generate Code for a Referenced Model

Using the UI
To generate HDL code for referenced model using the UI:

1 Right-click the Model block and select HDL Code > HDL Block
Properties.

2 For Architecture, select ModelReference.

3 Generate HDL code from your DUT subsystem.
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Tip If you encounter typing or naming conflicts between vector ports when
interfacing two or more generated VHDL code modules, consider using the
ScalarizePorts property to generate nonconflicting port definitions.

Using the Command Line
To generate HDL code for a referenced model using the command line:

1 Set the Architecture property of the Model block to ModelReference.

2 Generate HDL code for your DUT subsystem.

For example, to generate HDL code for a DUT subsystem, mydut, that
includes a model reference, submodel, at the command line, enter:

hdlset_param ('mydut/submodel', 'Architecture', 'ModelReference');
makehdl ('mydut');

Tip If you encounter typing or naming conflicts between vector ports when
interfacing two or more generated VHDL code modules, consider using the
ScalarizePorts property to generate nonconflicting port definitions.

Limitations for Model Reference Code Generation
When you generate HDL code for referenced models, the following limitations
apply:

• Block parameters for the Model block must be set to their default values.

• If multiple model references refer to the same model, their HDL block
properties must be the same.

• Referenced models cannot be protected models.

• Hierarchical distributed pipelining must be disabled.

The coder cannot move registers across a model reference. Therefore,
referenced models may inhibit the following optimizations:
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• Distributed pipelining

• Constrained output pipelining

The coder cannot apply the streaming optimization to a model reference.

The coder can apply the resource sharing optimization to share submodel
instances. However, this optimization can be applied only when all model
references that point to the same submodel have the same rate after
optimizations and rate propagation. The model reference final rate may
differ from the original rate, but all model references that point to the same
submodel must have the same final rate.
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Generate Black Box Interface for Referenced Model

In this section...

“When to Generate a Black Box Interface” on page 18-21

“How to Generate a Black Box Interface” on page 18-21

When to Generate a Black Box Interface
Specify a black box implementation for the Model block when you already
have legacy or manually-written HDL code. The coder generates the HDL
code that is required to interface to the referenced HDL code.

Code is generated with the following assumptions:

• Every HDL entity or module requires clock, clock enable, and reset ports.
Therefore, these ports are defined for each generated entity or module.

• Use of Simulink data types is assumed. For VHDL code, port data types
are assumed to be STD_LOGIC or STD_LOGIC_VECTOR.

If you want to generate code for a multirate, multiclock DUT that includes
a submodel, use model referencing. For details, see “Model Referencing for
HDL Code Generation” on page 18-18.

How to Generate a Black Box Interface
To instantiate an HDL wrapper, or black box interface, for a referenced model:

1 Right-click the Model block and select HDL Code > HDL Block
Properties.

In the HDL Block Properties dialog box:

• For Architecture, select BlackBox.

• Customize the ports and other implementation parameters. To learn
more about customizing the ports, see “Customize the Generated
Interface” on page 18-63.

2 Generate HDL code for your DUT subsystem.
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Note The checkhdl function does not check port data types within the
referenced model.

Tip If you encounter typing or naming conflicts between vector ports when
interfacing two or more generated VHDL code modules, consider using the
ScalarizePorts property to generate nonconflicting port definitions.
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Generate Code for Enabled and Triggered Subsystems

In this section...

“Code Generation for Enabled Subsystems” on page 18-23

“Code Generation for Triggered Subsystems” on page 18-24

“Best Practices for Using Enabled and Triggered Subsystems” on page 18-26

Code Generation for Enabled Subsystems
An enabled subsystem is a subsystem that receives a control signal via an
Enable block. The enabled subsystem executes at each simulation step
where the control signal has a positive value. For detailed information on
how to construct and configure enabled subsystems, see “Create an Enabled
Subsystem” in the Simulink documentation.

The coder supports HDL code generation for enabled subsystems that meet
the following conditions:

• The DUT (i.e., the top-level subsystem for which code is generated) must
not be an enabled subsystem.

• The coder does not support subsystems that are both triggered and enabled
for HDL code generation.

• The enable signal must be a scalar.

• The data type of the enable signal must be either boolean or ufix1.

• Outputs of the enabled subsystem must have an initial value of 0.

• All inputs and outputs of the enabled subsystem (including the enable
signal) must run at the same rate.

• The Show output port parameter of the Enable block must be set to Off.

• The States when enabling parameter of the Enable block must be set to
held (i.e., the Enable block does not reset states when enabled).

• The Output when disabled parameter for the enabled subsystem output
port(s) must be set to held (i.e., the enabled subsystem does not reset
output values when disabled).
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• The following blocks are not supported in enabled subsystems targeted for
HDL code generation:

- dspmlti4/CIC Decimation

- dspmlti4/CIC Interpolation

- dspmlti4/FIR Decimation

- dspmlti4/FIR Interpolation

- dspsigops/Downsample

- dspsigops/Upsample

- HDL Cosimulation blocks for HDL Verifier

- simulink/Signal Attributes/Rate Transition

- hdldemolib/FFT

- hdldemolib/HDL Streaming FFT

- hdldemolib/Dual Port RAM

- hdldemolib/Simple Dual Port RAM

- hdldemolib/Single Port RAM

- Subsystem black box (SubsystemBlackBoxHDLInstantiation)

The Automatic Gain Controller example model to shows how you can use
enabled subsystems in HDL code generation. To open the example model,
enter:

hdlcoder_agc

Code Generation for Triggered Subsystems
A triggered subsystem is a subsystem that receives a control signal via a
Trigger block. The enabled triggered executes for one clock cycle each time a
trigger event occurs. For detailed information on how to define trigger events
and configure triggered subsystems, see “Create a Triggered Subsystem” in
the Simulink documentation.

The coder supports HDL code generation for triggered subsystems that meet
the following conditions:
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• The DUT (that is, the top-level subsystem for which code is generated)
must not be a triggered subsystem.

• The coder does not support subsystems that are both triggered and enabled
for HDL code generation.

• The trigger signal must be a scalar.

• The data type of the trigger signal must be either boolean or ufix1.

• Outputs of the triggered subsystem must have an initial value of 0.

• All inputs and outputs of the triggered subsystem (including the trigger
signal) must run at the same rate. (See “Note on Use of the Signal Builder
Block” on page 18-26 for information on a special case.)

• The Show output port parameter of the Trigger block must be set to Off.

• The following blocks are not supported in triggered subsystems targeted for
HDL code generation:

- Discrete-Time Integrator

- dspmlti4/CIC Decimation

- dspmlti4/CIC Interpolation

- dspmlti4/FIR Decimation

- dspmlti4/FIR Interpolation

- dspsigops/Downsample

- dspsigops/Upsample

- HDL Cosimulation blocks for HDL Verifier

- simulink/Signal Attributes/Rate Transition

- hdldemolib/FFT

- hdldemolib/HDL Streaming FFT

- hdldemolib/Dual Port RAM

- hdldemolib/Simple Dual Port RAM

- hdldemolib/Single Port RAM

- Subsystem black box (SubsystemBlackBoxHDLInstantiation)
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Tip For best results the trigger signal should be a synchronous signal.

Best Practices for Using Enabled and Triggered
Subsystems
It is good practice to consider the following when using enabled and triggered
subsystems in models targeted for HDL code generation:

• For synthesis results to match Simulink results, Enable and Trigger ports
should be driven by registered logic (with a synchronous clock) on the
FPGA.

• The use of enabled or triggered subsystems can affect synthesis results in
the following ways:

- In some cases the system clock speed may drop by a small percentage.

- Generated code will use more resources, scaling with the number of
enabled or triggered subsystem instances and the number of output
ports per subsystem.

Note on Use of the Signal Builder Block
When you connect outputs from a Signal Builder block to a triggered
subsystem, you may need to use a Rate Transition block. To run all triggered
subsystem ports at the same rate:

• If the trigger source is a Signal Builder block, but the other triggered
subsystem inputs come from other sources, insert a Rate Transition block
into the signal path before the trigger input.

• If all inputs (including the trigger) come from a Signal Builder block, they
have the same rate, so special action is not required.
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Create a Xilinx System Generator Subsystem

In this section...

“Why Use Xilinx System Generator Subsystems?” on page 18-27

“Requirements for Xilinx System Generator Subsystems” on page 18-27

“How to Create a Xilinx System Generator Subsystem” on page 18-28

“Limitations for Code Generation from Xilinx System Generator
Subsystems” on page 18-28

Why Use Xilinx System Generator Subsystems?
You can generate HDL code from a model with both Simulink and Xilinx
blocks using Xilinx System Generator (XSG) subsystems.

Using both Simulink and Xilinx blocks in your model provides the following
benefits:

• A single platform for combined Simulink and Xilinx System Generator
simulation, code generation, and synthesis.

• Targeted code generation: Xilinx System Generator for DSP generates code
from Xilinx blocks; HDL Coder generates code from Simulink blocks.

• HDL Coder area and speed optimizations for Simulink components.

Requirements for Xilinx System Generator
Subsystems
You must group your Xilinx blocks into one or more Xilinx System Generator
(XSG) subsystems for code generation. An XSG subsystem can contain a
hierarchy of subsystems.

To generate code from a Xilinx System Generator subsystem, you must use
ISE Design Suite 13.4 or later.

An XSG subsystem is a Subsystem block with:

• Architecture set to Module.
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• One System Generator token, placed at the top level of the XSG subsystem
hierarchy.

• Xilinx blocks.

• Simulink blocks not requiring code generation.

• Input and output ports connected directly to Gateway In or Gateway Out
blocks.

• Propagate data type to output option enabled on Gateway Out blocks.

• Matching input and output data types on Gateway In blocks. See
“Limitations for Code Generation from Xilinx System Generator
Subsystems” on page 18-28.

How to Create a Xilinx System Generator Subsystem
1 Create a subsystem containing the Xilinx blocks and set its architecture
to "Module".

2 Add a System Generator token at the top level of the subsystem.

You can have subsystem hierarchy in a Xilinx System Generator
subsystem, but there must be a System Generator token at the top level
of the hierarchy.

3 Connect each subsystem input or output port directly to a Gateway In or
Gateway Out block.

4 On each Gateway Out block, select the Propagate data type to output
option.

For an example of HDL code generation from a Xilinx System Generator
subsystem, see “Using Xilinx System Generator for DSP with HDL Coder” on
page 18-33.

Limitations for Code Generation from Xilinx System
Generator Subsystems
Code generation from Xilinx System Generator (XSG) subsystems has the
following limitations:
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• ConstrainedOutputPipeline, InputPipeline, and OutputPipeline are
the only valid block properties for an XSG subsystem.

• HDL Coder does not generate code for blocks within an XSG subsystem,
including Simulink blocks.

• Gateway In blocks must not do nontrivial data type conversion. For
example, a Gateway In block can convert between the sfix8_en6 and
Fix_8_6 data types, but changing data sign, word length, or fraction length
is not allowed.

• For Verilog code generation, Simulink block names in your design cannot
be the same as Xilinx names. Similarly, Xilinx blocks in your design cannot
have the same name as other Xilinx blocks. The coder cannot resolve these
name conflicts, and generates an error late in the code generation process.
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Create an Altera DSP Builder Subsystem

In this section...

“Why Use Altera DSP Builder Subsystems?” on page 18-30

“Requirements for Altera DSP Builder Subsystems” on page 18-30

“How to Create an Altera DSP Builder Subsystem” on page 18-31

“Determine Clocking Requirements for Altera DSP Builder Subsystems” on
page 18-31

“Limitations for Code Generation from Altera DSP Builder Subsystems” on
page 18-32

Why Use Altera DSP Builder Subsystems?
You can generate HDL code from a model with both Simulink and Altera DSP
Builder Advanced blocks using Altera DSP Builder (DSPB) subsystems.

Using both Simulink and Altera blocks in your model provides the following
benefits:

• A single platform for combined Simulink and Altera DSP Builder
simulation, code generation, and synthesis.

• Targeted code generation: Altera DSP Builder generates code from Altera
blocks; HDL Coder generates code from Simulink blocks.

• HDL Coder area and speed optimizations for Simulink components.

Requirements for Altera DSP Builder Subsystems
You must group your Altera blocks into one or more Altera DSP Builder
(DSPB) subsystems for code generation. A DSPB subsystem can contain a
hierarchy of subsystems.

To generate code from a Altera DSP Builder subsystem, you must use Quartus
II 13.0 or later.

A DSPB subsystem is a Subsystem block with:
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• Architecture set to Module.

• A valid DSP Builder Advanced Blockset design, including a top-level Device
block and DSP Builder Advanced blocks, as defined in the Altera DSP
Builder documentation.

How to Create an Altera DSP Builder Subsystem
1 Create an Altera DSP Builder Advanced Blockset design as defined in the
Altera DSP Builder documentation.

2 Create a subsystem containing the Altera DSP Builder Advanced Blockset
design, and set its architecture to Module.

To see an example that shows HDL code generation for an Altera DSP Builder
subsystem, see Using Altera DSP Builder Advanced Blockset with HDL Coder.

Determine Clocking Requirements for Altera DSP
Builder Subsystems
DSPB subsystems must either run at the DUT subsystem base rate, or you
can provide a custom clock.

Determining the DUT subsystem base rate can be an iterative process. Area
optimizations, such as RAM mapping or resource sharing, may cause the
coder to oversample area-optimized parts of the design. Therefore, the DUT
subsystem initial base rate may differ from the final base rate, and you may
not know the model base rate until you generate code.

To determine the model base rate, iteratively generate code until your model
converges on a base rate:

1 Generate code for the DUT subsystem that contains your DSPB subsystem.

2 If the coder displays an error message that says that your DSPB subsystem
rate is slower than the base rate, modify the DSPB subsystem inputs so
that the DSPB subsystem runs at the base rate in the message.

For example, you can insert an Upsample block.

3 Repeat these steps until your DSPB subsystem rate matches the base rate.
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To provide a custom clock for your DSPB subsystem:

1 In the HDL Workflow Advisor, for HDL Code Generation > Set Code
Generation Options > Set Advanced Options > Clock inputs, select
Multiple.

2 In the generated HDL code, connect your custom clocks to the DUT clock
input ports that corresponds to your DSPB subsystems clock.

Limitations for Code Generation from Altera DSP
Builder Subsystems
Code generation for Altera DSP Builder (DSPB) subsystems has the following
limitations:

• The DUT subsystem cannot be a DSPB subsystem.

• DSPB subsystems must run at the Simulink model base rate. You may
need to iteratively generate code to determine the base rate, because
area optimizations can cause local multirate. See “Determine Clocking
Requirements for Altera DSP Builder Subsystems” on page 18-31 for a
workflow.

• Altera blocks with bus interfaces are not supported.

• Altera DSP Builder does not generate Verilog code.

• Test bench simulation mismatches can occur because the Simulink data
comparison does not take Altera valid signals into account. For an example
and workaround, see Using Altera DSP Builder Advanced Blockset with
HDL Coder.
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Using Xilinx System Generator for DSP with HDL Coder
This example shows how to use Xilinx System Generator for DSP with HDL
Coder™.

Setup for Xilinx System Generator

In order to use the Xilinx System Generator Subsystem block, you must have
Xilinx ISE 13.4 set up with Simulink.

Introduction

Using the Xilinx System Generator Subsystem block enables you to model
designs using blocks from both Simulink and Xilinx, and to automatically
generate integrated HDL code. HDL Coder™ generates HDL code from the
Simulink blocks, and uses Xilinx System Generator to generate HDL code
from the Xilinx System Generator Subsystem blocks.

In this example, the design, or code generation subsystem, contains two
parts: one with Simulink native blocks, and one with Xilinx blocks.
The Xilinx blocks are grouped in a Xilinx System Generator Subsystem
(hdlcoder_slsysgen/SLandSysGen/Xilinx System Generator Subsystem).
System Generator optimizes these blocks for Xilinx FPGAs. In the rest of the
design, Simulink blocks and HDL Coder™ offer many model-based design
features, such as distributed pipelining and delay balancing, to perform
model-level optimizations.

open_system('hdlcoder_slsysgen');
open_system('hdlcoder_slsysgen/SLandSysGen');
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Create Xilinx System Generator Subsystem

To create a Xilinx System Generator subsystem:

1 Put the Xilinx blocks in one subsystem and set its architecture to "Module"
(the default value).

2 Place a System Generator token at the top level of the subsystem. You can
have subsystem hierarchy in a Xilinx System Generator Subsystem, but
there must be a System Generator token at the top level of the hierarchy.

open_system('hdlcoder_slsysgen/SLandSysGen/Xilinx System Generator Subsyste
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Configure Gateway In and Gateway Out Blocks

In each Xilinx System Generator subsystem, you must connect input and
output ports directly to Gateway In and Gateway Out blocks.

Gateway In blocks must not do non-trivial data type conversion. For example,
a Gateway In block can convert between uint8 and UFix_8_0, but changing
data sign, word length, or fraction length is not allowed.

Perform Model-Level Optimizations for Simulink Components

In this example, a sum tree is modeled with Simulink blocks. The distributed
pipelining feature can take care of the speed optimization.

Here the Output Pipeline property of
hdlcoder_slsysgen/SLandSysGen/Simulink Subsystem is set to "4" and the
Distributed Pipelining property is set to "on". Pipeline registers inserted by
the distributed pipelining feature will be pushed into the sum tree to reduce
the critical path without changing the model function. Other optimizations,
such as resource sharing, are also available, but not used in this example.

open_system('hdlcoder_slsysgen/SLandSysGen/Simulink Subsystem');
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Generate HDL Code

You can use either makehdl at the command line or HDL Workflow Advisor to
generate HDL code. To use makehdl:

makehdl('hdlcoder_slsysgen/SLandSysGen');

You can also generate a testbench, simulate, and synthesize the design as you
would for any other model.
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Code Generation for HDL Cosimulation Blocks
The coder supports HDL code generation for the following HDL Cosimulation
blocks:

• HDL Verifier for use with Mentor Graphics ModelSim

• HDL Verifier for use with Cadence Incisive

Each of the HDL Cosimulation blocks cosimulates a hardware component by
applying input signals to, and reading output signals from, an HDL model
that executes under an HDL simulator.

See the “Define HDL Cosimulation Block Interface” section of the HDL
Verifier documentation for information on timing, latency, data typing,
frame-based processing, and other issues that may be of concern to you when
setting up an HDL cosimulation.

You can use an HDL Cosimulation block with the coder to generate an
interface to your manually written or legacy HDL code. When an HDL
Cosimulation block is included in a model, the coder generates a VHDL or
Verilog interface, depending on the selected target language.

When the target language is VHDL, the generated interface includes:

• An entity definition. The entity defines ports (input, output, and clock)
corresponding in name and data type to the ports configured on the HDL
Cosimulation block. Clock enable and reset ports are also declared.

• An RTL architecture including a component declaration, a component
configuration declaring signals corresponding to signals connected to the
HDL Cosimulation ports, and a component instantiation.

• Port assignment statements as required by the model.

When the target language is Verilog, the generated interface includes:

• A module defining ports (input, output, and clock) corresponding in name
and data type to the ports configured on the HDL Cosimulation block. The
module also defines clock enable and reset ports, and wire declarations
corresponding to signals connected to the HDL Cosimulation ports.
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• A module instance.

• Port assignment statements as required by the model.

The requirements for using the HDL Cosimulation block for code generation
are the same as those for cosimulation. If you want to check these conditions
before initiating code generation, select Simulation > Update Diagram.
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Generate a Cosimulation Model

In this section...

“What Is A Cosimulation Model?” on page 18-39

“Generating a Cosimulation Model from the GUI” on page 18-40

“Structure of the Generated Model” on page 18-46

“Launching a Cosimulation” on page 18-53

“The Cosimulation Script File” on page 18-55

“Complex and Vector Signals in the Generated Cosimulation Model” on
page 18-58

“Generating a Cosimulation Model from the Command Line” on page 18-60

“Naming Conventions for Generated Cosimulation Models and Scripts” on
page 18-61

“Limitations for Cosimulation Model Generation” on page 18-61

Note To use this feature, your installation must include an HDL Verifier
license.

What Is A Cosimulation Model?

A cosimulation model is an automatically generated Simulink model
configured for both Simulink simulation and cosimulation of your design
with an HDL simulator. HDL Coder supports automatic generation of a
cosimulation model as a part of the test bench generation process.

The cosimulation model includes:

• A behavioral model of your design, realized in a Simulink subsystem.

• A corresponding HDL Cosimulation block, configured to cosimulate the
design using HDL Verifier. The coder configures the HDL Cosimulation
block for use with either Mentor Graphics ModelSim or Cadence Incisive.

• Test input data, calculated from the test bench stimulus that you specify.

18-39



18 Interfacing Subsystems and Models to HDL Code

• Scope blocks, which let you observe and compare the DUT and HDL
cosimulation outputs, and any error between these signals.

• Goto and From blocks that capture the stimulus and response signals from
the DUT and use these signals to drive the cosimulation.

• A comparison/assertion mechanism that reports discrepancies between the
original DUT output and the cosimulation output .

In addition to the generated model, the coder generates a TCL script that
launches and configures your cosimulation tool. Comments in the script file
document clock, reset, and other timing signal information defined by the
coder for the cosimulation tool.

Generating a Cosimulation Model from the GUI
This example demonstrates the process for generating a cosimulation model.
The example model, hdl_cosim_demo1, implements a simple multiply and
accumulate (MAC) algorithm. Open the model by entering the name at the
MATLAB command line:

hdl_cosim_demo1

The following figure shows the top-level model.

The DUT is the MAC subsystem.
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Cosimulation model generation takes place during generation of the test
bench. As a best practice, generate HDL code before generating a test bench,
as follows:

1 In the HDL Code Generation pane of the Configuration Parameters
dialog box, select the DUT for code generation. In this case, it is
hdl_cosim_demo1/MAC.
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2 Click Apply.

3 Click Generate. The coder displays progress messages, as shown in the
following listing:

### Applying HDL Code Generation Control Statements

### Starting HDL Check.

### HDL Check Complete with 0 error, 0 warning and 0 message.

### Begin VHDL Code Generation
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### Working on hdl_cosim_demo1/MAC as hdlsrc\MAC.vhd

### HDL Code Generation Complete.

Next, configure the test bench options to include generation of a cosimulation
model:

1 Select the HDL Code Generation > Test Bench pane of the
Configuration Parameters dialog box.

2 Select the Cosimulation model for use with: option. Selecting this
check box enables the pulldown menu to the right.
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3 Select the desired cosimulation tool from the dropdown menu.

4 Configure required test bench options. The coder records option settings in
a generated script file (see “The Cosimulation Script File” on page 18-55).

5 Click Apply.

Next, generate test bench code and the cosimulation model:

1 Click Generate Test Bench. The coder displays progress messages as
shown in the following listing:

### Begin TestBench Generation

### Generating new cosimulation model: gm_hdl_cosim_demo1_mq0.mdl

### Generating new cosimulation tcl script: hdlsrc/gm_hdl_cosim_demo1_mq0_tcl.m

### Cosimulation Model Generation Complete.

### Generating Test bench: hdlsrc\MAC_tb.vhd

### Please wait ...

### HDL TestBench Generation Complete.

When test bench generation completes, the coder opens the generated
cosimulated model. The following figure shows the generated model.
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2 Save the generated model. The generated model exists only in memory
unless you save it.

As indicated by the code generation messages, the coder generates the
following files in addition to the usual HDL test bench file:

• A cosimulation model (gm_hdl_cosim_demo1_mq)

• A file that contains a TCL cosimulation script and information about
settings of the cosimulation model (gm_hdl_cosim_demo1_mq_tcl.m)

Generated file names derive from the model name, as described in “Naming
Conventions for Generated Cosimulation Models and Scripts” on page 18-61.

The next section, “Structure of the Generated Model” on page 18-46, describes
the features of the model. Before running a cosimulation, become familiar
with these features.
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Structure of the Generated Model
You can set up and launch a cosimulation using controls located in the
generated model. This section examines the model generated from the
example MAC subsystem.

Simulation Path
The model comprises two parallel signal paths. The simulation path, located
in the upper half of the model window, is nearly identical to the original
DUT. The purpose of the simulation path is to execute a normal Simulink
simulation and provide a reference signal for comparison to the cosimulation
results. The following figure shows the simulation path.

The two subsystems labelled ToCosimSrc and ToCosimSink do not change
the performance of the simulation path. Their purpose is to capture
stimulus and response signals of the DUT and route them to and from the
HDL cosimulation block (see “Signal Routing Between Simulation and
Cosimulation Paths” on page 18-49).

Cosimulation Path
The cosimulation path, located in the lower half of the model window,
contains the generated HDL Cosimulation block. The following figure shows
the cosimulation path.
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The FromCosimSrc subsystem receives the same input signals that drive the
DUT. In the gm_hdl_cosim_demo1_mq0 model, the subsystem simply passes
the inputs on to the HDL Cosimulation block. Signals of some other data
types require further processing at this stage (see “Signal Routing Between
Simulation and Cosimulation Paths” on page 18-49).

The Compare subsystem at the end of the cosimulation path compares the
cosimulation output to the reference output produced by the simulation path.
If the comparison detects a discrepancy, an Assertion block in the Compare
subsystem displays a warning message. If desired, you can disable assertions
and control other operations of the Compare subsystem. See “Controlling
Assertions and Scope Displays” on page 18-51 for details.

The coder populates the HDL Cosimulation block with the compiled I/O
interface of the DUT. The following figure shows the Ports pane of the Mac_mq
HDL Cosimulation block.
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The coder sets the Full HDL Name, Sample Time, Data Type, and
other fields as required by the model. The coder also configures other HDL
Cosimulation block parameters under the Timescales and Tcl panes.
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Tip The coder configures the generated HDL Cosimulation block for the
Shared Memory connection method.

Start Simulator Control
When you double-click the Start Simulator control, it launches the selected
cosimulation tool and passes in a startup command to the tool. The Start
Simulator icon displays the startup command, as shown in the following
figure.

The commands executed when you double-click the Start Simulator icon
launch and set up the cosimulation tool, but they do not start the actual
cosimulation. “Launching a Cosimulation” on page 18-53 describes how to run
a cosimulation with the generated model.

Signal Routing Between Simulation and Cosimulation Paths
The generated model routes signals between the simulation and cosimulation
paths using Goto and From blocks. For example, the Goto blocks in the
ToCosimSrc subsystem route each DUT input signal to a corresponding From
block in the FromCosimSrc subsystem. The following figures show the Goto
and From blocks in each subsystem.
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The preceding figures show simple scalar inputs. Signals of complex and
vector data types require further processing. See “Complex and Vector Signals
in the Generated Cosimulation Model” on page 18-58 for further information.

Controlling Assertions and Scope Displays
The Compare subsystem lets you control the display of signals on scopes, and
warning messages from assertions. The following figure shows the Compare
subsystem for the gm_hdl_cosim_demo1_mq0 model.
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For each output of the DUT, the coder generates an assertion checking
subsystem (Assert_OutN ). The subsystem computes the difference
(err) between the original DUT output (dut ref) and the corresponding
cosimulation output (cosim). The subsystem routes the comparison result to
an Assertion block. If the comparison result is not zero, the Assertion block
reports the discrepancy.

The following figure shows the Assert_Out1 subsystem for the
gm_hdl_cosim_demo1_mq0 model.
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This subsystem also routes the dut ref, cosim, and err signals to a Scope for
display at the top level of the model.

By default, the generated cosimulation model enables all assertions and
displays all Scopes. Use the buttons on the Compare subsystem to disable
assertions or hide Scopes.

Tip Assertion messages are warnings and do not stop simulation.

Launching a Cosimulation
To run a cosimulation with the generated model:

1 Double-click the Compare subsystem to configure Scopes and assertion
settings.

If you want to disable Scope displays or assertion warnings before starting
your cosimulation, use the buttons on the Compare subsystem (shown in
the following figure).

2 Double-click the Start Simulator control.
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The Start Simulator control launches your HDL simulator (in this case,
HDL Verifier for use with Mentor Graphics ModelSim).

The HDL simulator in turn executes a startup script. In this
case the startup script consists of the TCL commands located in
gm_hdl_cosim_demo1_mq0_tcl.m. When the HDL simulator finishes
executing the startup script, it displays a message like the following.

# Ready for cosimulation...

3 In the Simulink Editor for the generated model, start simulation.

As the cosimulation runs, the HDL simulator displays messages like the
following.

# Running Simulink Cosimulation block.

# Chip Name: --> hdl_cosim_demo1/MAC

# Target language: --> vhdl

# Target directory: --> hdlsrc

# Fri Jun 05 4:26:34 PM Eastern Daylight Time 2009

# Simulation halt requested by foreign interface.

# done

At the end of the cosimulation, if you have enabled Scope displays, the
compare scope displays the following signals:

• cosim: The result signal output by the HDL Cosimulation block.

• dut ref: The reference output signal from the DUT.

• err: The difference (error) between these two outputs.

The following figure shows these signals.
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The Cosimulation Script File
The generated script file has two sections:

• A comment section that documents model settings that are relevant to
cosimulation.
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• A function that stores several lines of TCL code into a variable, tclCmds.
The cosimulation tools execute these commands when you launch a
cosimulation.

Header Comments Section
The following listing shows the comment section of a script file generated for
the hdl_cosim_demo1 model:

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Auto generated cosimulation 'tclstart' script

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Source Model : hdl_cosim_demo1.mdl

% Generated Model : gm_hdl_cosim_demo1.mdl

% Cosimulation Model : gm_hdl_cosim_demo1_mq.mdl

%

% Source DUT : gm_hdl_cosim_demo1_mq/MAC

% Cosimulation DUT : gm_hdl_cosim_demo1_mq/MAC_mq

%

% File Location : hdlsrc/gm_hdl_cosim_demo1_mq_tcl.m

% Created : 2009-06-16 10:51:01

%

% Generated by MATLAB 7.9 and HDL Coder 1.6

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% ClockName : clk

% ResetName : reset

% ClockEnableName : clk_enable

%

% ClockLowTime : 5ns

% ClockHighTime : 5ns

% ClockPeriod : 10ns

%

% ResetLength : 20ns

% ClockEnableDelay : 10ns

% HoldTime : 2ns

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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% ModelBaseSampleTime : 1

% OverClockFactor : 1

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Mapping of DutBaseSampleTime to ClockPeriod

%

% N = (ClockPeriod / DutBaseSampleTime) * OverClockFactor

% 1 sec in Simulink corresponds to 10ns in the HDL

% Simulator(N = 10)

%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% ResetHighAt : (ClockLowTime + ResetLength + HoldTime)

% ResetRiseEdge : 27ns

% ResetType : async

% ResetAssertedLevel : 1

%

% ClockEnableHighAt : (ClockLowTime + ResetLength + ClockEnableDelay + HoldTime)

% ClockEnableRiseEdge : 37ns

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

The comments section comprises the following subsections:

• Header comments: This section documents the files names for the source
and generated models and the source and generated DUT.

• Test bench settings: This section documents the makehdltb property values
that affect cosimulation model generation. The generated TCL script uses
these values to initialize the cosimulation tool.

• Sample time information: The next two sections document the base
sample time and oversampling factor of the model. The coder uses
ModelBaseSampleTime and OverClockFactor to map the clock period of
the model to the HDL cosimulation clock period.

• Clock, clock enable, and reset waveforms: This section documents the
computations of the duty cycle of the clk, clk_enable, and reset signals.
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TCL Commands Section
The following listing shows the TCL commands section of a script file
generated for the hdl_cosim_demo1 model:

function tclCmds = gm_hdl_cosim_demo1_mq_tcl

tclCmds = {

'do MAC_compile.do',...% Compile the generated code

'vsimulink work.MAC',...% Initiate cosimulation

'add wave /MAC/clk',...% Add wave commands for chip input signals

'add wave /MAC/reset',...

'add wave /MAC/clk_enable',...

'add wave /MAC/In1',...

'add wave /MAC/In2',...

'add wave /MAC/ce_out',...% Add wave commands for chip output signals

'add wave /MAC/Out1',...

'set UserTimeUnit ns',...% Set simulation time unit

'puts ""',...

'puts "Ready for cosimulation..."',...

};

end

Complex and Vector Signals in the Generated
Cosimulation Model
Input signals of complex or vector data types require insertion of additional
elements into the cosimulation path. this section describes these elements.

Complex Signals
The generated cosimulation model automatically breaks complex inputs
into real and imaginary parts. The following figure shows a FromCosimSrc
subsystem that receives two complex input signals. The subsystem breaks the
inputs into real and imaginary parts before passing them to the subsystem
outputs.
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The model maintains the separation of real and imaginary components
throughout the cosimulation path. The Compare subsystem performs separate
comparisons and separate scope displays for the real and imaginary signal
components.

Vector Signals
The generated cosimulation model flattens vector inputs. The following figure
shows a FromCosimSrc subsystem that receives two vector input signals of
dimension 2. The subsystem flattens the inputs into scalars before passing
them to the subsystem outputs.

18-59



18 Interfacing Subsystems and Models to HDL Code

Generating a Cosimulation Model from the Command
Line
To generate a cosimulation model from the command line, pass
the GenerateCosimModel property to the makehdltb function.
GenerateCosimModel takes one of the following property values:

• 'ModelSim : generate a cosimulation model configured for HDL Verifier for
use with Mentor Graphics ModelSim.

• 'Incisive': generate a cosimulation model configured for HDL Verifier
for use with Cadence Incisive.

In the following command, makehdltb generates a cosimulation model
configured for HDL Verifier for use with Mentor Graphics ModelSim.

makehdltb('hdl_cosim_demo1/MAC','GenerateCosimModel','ModelSim');
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Naming Conventions for Generated Cosimulation
Models and Scripts
The naming convention for generated cosimulation models is

prefix_modelname_toolid_ suffix, where:

• prefix is the string gm.

• modelname is the name of the generating model.

• toolid is an identifier indicating the HDL simulator chosen by the
Cosimulation model for use with: option. Valid toolid strings are
'mq' and 'in'.

• suffix is an integer that provides each generated model with a unique
name. The suffix increments with each successive test bench generation for
a given model. For example, if the original model name is test, then the
sequence of generated cosimulation model names is gm_test_toolid_0,
gm_test_toolid_1, and so on.

The naming convention for generated cosimulation scripts is the same as that
for models, except that the file name extension is .m.

Limitations for Cosimulation Model Generation
When you configure a model for cosimulation model generation, observe the
following limitations:

• Explicitly specify the sample times of source blocks to the DUT in the
simulation path. Use of the default sample time (-1) in the source blocks
may cause sample time propagation problems in the cosimulation path of
the generated model.

• The coder does not support continuous sample times for cosimulation
model generation. Do not use sample times 0 or Inf in source blocks in
the simulation path.

• Combinatorial output paths (caused by absence of registers in the
generated code) have a latency of one extra cycle in cosimulation. This
causes a one cycle discrepancy in the comparison between the simulation
and cosimulation outputs. To avoid this discrepancy, the Enable direct
feedthrough for HDL design with pure combinational datapath
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option on the Ports pane of the HDL Cosimulation block is automatically
selected. For more information, see “Direct Feedthrough Cosimulation”.

Alternatively, you can avoid the latency by specifying output pipelining (see
“OutputPipeline” on page 11-80). This will fully register outputs during
code generation.

• Double data types are not supported for the HDL Cosimulation block.
Avoid use of double data types in the simulation path when generating
HDL code and a cosimulation model.
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Customize the Generated Interface
You can customize port names and set attributes of the external component
when you generate an interface from the following block types:

• Model

• Subsystem

• HDL Cosimulation

Open the HDL Properties dialog box to see the interface generation
parameters.

The following table summarizes the names, value settings, and purpose of
the interface generation parameters.

Parameter Name Values Description

AddClockEnablePort 'on' | 'off'

Default: 'on'

If 'on', add a clock enable
input port to the interface
generated for the block. The
name of the port is specified by
ClockEnableInputPort.

AddClockPort 'on' | 'off'

Default: 'on'

If 'on', add a clock input port to
the interface generated for the
block. The name of the port is
specified by ClockInputPort.

AddResetPort 'on' | 'off'

Default: 'on'

If 'on', add a reset input port to
the interface generated for the
block. The name of the port is
specified by ResetInputPort.

AllowDistributedPipelining 'on' | 'off'

Default: 'off'

If 'on', allow the coder to move
registers across the block, from
input to output or output to input.

ClockEnableInputPort Default: 'clk_enable' Specifies HDL name for block’s
clock enable input port.
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Parameter Name Values Description

ClockInputPort Default: 'clk' Specifies HDL name for block’s
clock input signal.

EntityName Default: Entity name
string is derived from the
block name, and modified
when necessary to generate
a legal VHDL entity name.

Specifies VHDL entity or Verilog
module name generated for the
block.

GenericList Default: An empty cell
array of string data.

Each element of the cell
array is another cell array
of the form {'Name',
'Value', 'Type'}, where
'Type' is optional. If you
omit 'Type', 'integer' is
passed as the data type.

Specifies a list of parameter/value
pairs (with optional data type
specification) in string format
to pass to a subsystem with a
BlackBox implementation.

ImplementationLatency -1 | 0 | positive integer

Default: -1

Specifies the additional latency of
the external component in time
steps, relative to the Simulink
block.

If 0 or greater, this value is used
for delay balancing. Your inputs
and outputs must operate at the
same rate.

If -1, latency is unknown. This
disables delay balancing.

InlineConfigurations
(VHDL only)

'on' | 'off'

Default: If this parameter
is unspecified, defaults
to the value of the global
InlineConfigurations
property.

If 'off', suppress generation of a
configurations for the block, and
require a user-supplied external
configuration.

18-64



Customize the Generated Interface

Parameter Name Values Description

InputPipeline Default: '0' Specifies the number of input
pipeline stages (pipeline depth) in
the generated code.

OutputPipeline Default: '0' Specifies the number of output
pipeline stages (pipeline depth) in
the generated code.

ResetInputPort Default: 'reset' Specifies HDL name for block’s
reset input.

VHDLArchitectureName
(VHDL only)

Default: 'rtl' Specifies RTL architecture name
generated for the block. The
architecture name is generated
only if InlineConfigurations =
'on'.

VHDLComponentLibrary
(VHDL only)

Default: 'work' Specifies the library from which to
load the VHDL component.
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Pass-Through and No-Op Implementations
The coder provides a pass-through or no-op implementation for some blocks.
A pass-through implementation generates a wire in the HDL; a no-op
implementation omits code generation for the block or subsystem. These
implementations are useful in cases where you need a block for simulation,
but do not need the block or subsystem in your generated HDL code.

The pass-through and no-op implementations are summarized in the
following table.

Implementation Description

Pass-through implementations Provides a pass-through implementation in which
the block’s inputs are passed directly to its outputs.
The coder supports the following blocks with a
pass-through implementation:

• Convert 1-D to 2-D

• Reshape

• Signal Conversion

• Signal Specification

No HDL This implementation completely removes the block
from the generated code. This enables you to use
the block in simulation but treat it as a “no-op” in
the HDL code. This implementation is used for
many blocks (such as Scopes and Assertions) that
are significant in simulation but are meaningless
in HDL code.
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Introduction to Stateflow HDL Code Generation

In this section...

“Overview” on page 19-2

“Examples” on page 19-2

Overview
Stateflow charts provide concise descriptions of complex system behavior
using hierarchical finite state machine (FSM) theory, flow diagram notation,
and state-transition diagrams.

You use a chart to model a finite state machine or a complex control
algorithm intended for realization as an ASIC or FPGA. When the model
meets design requirements, you then generate HDL code (VHDL or Verilog)
that implements the design embodied in the model. You can simulate and
synthesize generated HDL code using industry standard tools, and then map
your system designs into FPGAs and ASICs.

In general, generation of VHDL or Verilog code from a model containing a
chart does not differ greatly from HDL code generation from other models.
The HDL code generator is designed to

• Support the largest possible subset of chart semantics that is consistent
with HDL. This broad subset lets you generate HDL code from existing
models without significant remodeling effort.

• Generate bit-true, cycle-accurate HDL code that is fully compatible with
Stateflow simulation semantics.

Examples
The following examples, illustrating HDL code generation from subsystems
that include Stateflow charts, are available:

• Greatest Common Divisor

• Pipelined Configurable FIR

• 2D FDTD Behavioral Model
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• CPU Behavioral Model

To open the example models, open the Help, navigate to the HDL Coder
documentation, and click Examples.
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Requirements for Stateflow HDL Code Generation

In this section...

“Overview” on page 19-4

“Location of Charts in the Model” on page 19-4

“Data Type Usage” on page 19-4

“Chart Initialization” on page 19-5

“Registered Output” on page 19-5

“Restrictions on Imported Code” on page 19-6

“Using Input and Output Events” on page 19-6

“Using For Loops” on page 19-6

“Other Restrictions” on page 19-7

Overview
This section summarizes the requirements and restrictions you should follow
when configuring Stateflow charts that are intended to target HDL code
generation. “Map Chart Semantics to HDL” on page 19-9 provides a more
detailed rationale for most of these requirements.

Location of Charts in the Model
A chart intended for HDL code generation must be part of a Simulink
subsystem. See “Structure a Model for HDL Code Generation” on page 19-24
for an example.

Data Type Usage

Supported Data Types
The current release supports a subset of MATLAB data types in charts
intended for use in HDL code generation. Supported data types are

• Signed and unsigned integer
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• Double and single

Note Results obtained from HDL code generated for models using
double or single data types might not be bit-true to results obtained from
simulation of the original model.

• Fixed point

• Boolean

Note Multidimensional arrays of these types are supported, with the
exception of data types assigned to ports. Port data types must be either
scalar or vector.

Chart Initialization
In charts intended for HDL code generation, enable the chart property
Execute (enter) Chart at Initialization. When this property is enabled,
default transitions are tested and actions reachable from the default
transition taken are executed. These actions correspond to the reset process
in HDL code. “Execution of a Chart at Initialization” describes existing
restrictions under this property.

The reset action must not entail the delay of combinatorial logic. Therefore,
do not perform arithmetic in initialization actions.

The chart property Initialize Outputs Every Time Chart Wakes Up
controls whether or not output is persistent.

Selecting Initialize Outputs Every Time Chart Wakes Up generates HDL
code that is more readable and has better synthesis results.

Registered Output
If you want to insert an output register that delays the chart output by a
simulation cycle, use the OutputPipeline block property.
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Restrictions on Imported Code
A chart intended for HDL code generation must be entirely self-contained.
The following restrictions apply:

• Do not call MATLAB functions other than min or max.

• Do not use MATLAB workspace data.

• Do not call C math functions

• If the Enable C-like bit operations property is disabled, do not use the
exponentiation operator (^). The exponentiation operator is implemented
with the C Math Library function pow.

• Do not include custom code. Information entered in the Simulation
Target > Custom Code pane of the Configuration Parameters dialog
box is ignored.

Using Input and Output Events
The coder supports the use of input and output events with Stateflow charts,
subject to the following constraints:

• You can define and use one and only one input event per Stateflow chart.
(There is no restriction on the number of output events you can use.)

• The coder does not support HDL code generation for charts that have
a single input event, and which also have nonzero initial values on the
chart’s output ports.

• All input and output events must be edge-triggered.

For detailed information on input and output events, see “Activate a Stateflow
Chart Using Input Events”and “Activate a Simulink Block Using Output
Events” in the Stateflow documentation.

Using For Loops
Do not explicitly use loops other than for loops in a chart intended for HDL
code generation. Observe the following restrictions on for loops:

• The data type of the loop counter variable must be int32.

• The coder supports only constant-bounded loops.
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The for loop example (sf_for) illustrates a design pattern for a for loop
using a graphical function.

Other Restrictions
The coder imposes a number of additional restrictions on the use of classic
chart features. These limitations exist because HDL does not support some
features of general-purpose sequential programming languages.

• Do not define local events in a chart from which HDL code is to be
generated.

Do not use the following implicit events:

- enter

- exit

- change

You can use the following implicit events:

- wakeup

- tick

Temporal logic can be used provided the base events are limited to these
types of implicit events.

Note Absolute-time temporal logic is not supported for HDL code
generation.

• Do not use recursion through graphical functions. The coder does not
currently support recursion.

• HDL does not support a goto statement. Therefore, do not use unstructured
flow diagrams, such as the flow diagram shown in the following figure.
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• Do not read from output ports if you do not have the Initialize Outputs
Every Time Chart Wakes Up chart option selected.

• Do not use Data Store Memory objects.

• Do not use pointer (&) or indirection (*) operators. See the discussion of
“Pointer and Address Operations”.

• If a chart gets a runtime overflow error during simulation, it is possible
to disable data range error checking and generate HDL code for the
chart. However, in such cases results obtained from the generated HDL
code might not be bit-true to results obtained from the simulation.
Recommended practice is to enable overflow checking and eliminate
overflow conditions from the model during simulation.
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Map Chart Semantics to HDL

In this section...

“Hardware Realization of Stateflow Semantics” on page 19-9

“Restrictions for HDL Realization” on page 19-11

Hardware Realization of Stateflow Semantics
A mapping from Stateflow semantics to an HDL implementation has the
following requirements:

• Requirement 1: Hardware designs require separability of output and
state update functions.

• Requirement 2: HDL is a concurrent language. To achieve the goal of
bit-true simulation, execution must be in order.

To meet Requirement 1, an FSM is coded in HDL as two concurrent
blocks that execute under different conditions. One block evaluates the
transition conditions, computes outputs and speculatively computes the
next state variables. The other block updates the current state variables
from the available next state and performs the actual state transitions. This
second block is activated only on the trigger edge of the clock signal, or an
asynchronous reset signal.

In practice, output computations usually occur more often than state updates.
The presence of inputs drives the computation of outputs. State transitions
occur at regular intervals (whenever the chart is activated).

The following diagram shows a concurrent implementation of Stateflow
semantics for output and update computations, intended for targeting HDL.
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The HDL code generator reuses the original single-function implementation
of Stateflow semantics almost without modification. There is one important
difference: instead of computing with state variables directly, state
computations are performed on local shadow variables. These variables
are local to the HDL function update_chart. At the beginning of the
update_chart functions, current_state is copied into the shadow variables.
At the end of the update_chart function, the newly computed state is
transferred to registers called collectively next_state. The values held
in these registers are copied to current_state (also registered) when
update_state is called.

By using local variables, this approach maps Stateflow sequential semantics
to HDL sequential statements, avoiding the use of concurrent statements.
For instance, local chart variables in function scope map to VHDL variables
in process scope. In VHDL, variable assignment is sequential. Therefore,
statements in a Stateflow function that uses local variables can map to
statements in a VHDL process that uses corresponding variables. The VHDL
assignments execute in the same order as the assignments in the Stateflow
function.
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Restrictions for HDL Realization
Some restrictions on chart usage are required to achieve a valid mapping
from a chart to HDL code. These are summarized briefly in “Requirements for
Stateflow HDL Code Generation” on page 19-4. The following sections give a
more detailed rationale for most of these restrictions.

Self-Contained Charts
The Stateflow C target allows generated code to have some dependencies
on code or data that is external to the chart. Stateflow charts intended for
HDL code generation, however, must be self-contained. Observe the following
rules for creating self-contained charts:

• Do not use C math functions such as sin and pow. There is no HDL
counterpart to the C math library.

• Do not use calls to functions coded in a language other than HDL. For
example, do not call MATLAB functions for a simulation target, as in the
following statement:

ml.disp( hello )

• Do not use custom code. There is no mechanism for embedding external
HDL code into generated HDL code. Custom C code (user-written C code
intended for linkage with C code generated from a Stateflow chart) is
ignored during HDL code generation.

See also “External Component Interfaces”.

• Do not use pointer (&) or indirection (*) operators. Pointer and indirection
operators have no function in a chart in the absence of custom code. Also,
pointer and indirection operators do not map directly to synthesizable HDL.

• Do not share data (via Data Store Memory blocks) between charts. The
coder does not map such global data to HDL, because HDL does not support
global data.

Charts Must Not Use Features Unsupported by HDL
When creating charts intended for HDL code generation, follow these
guidelines to avoid using Stateflow features that cannot be mapped to HDL:
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• Avoid recursion. While charts permit recursion (through both event
processing and user-written recursive graphical functions), HDL does not
allow recursion.

• Do not use Stateflow and local events. These event types do not have
equivalents in HDL. Therefore, these event types are not supported for
HDL code generation.

• Avoid unstructured code. Although charts allow unstructured code to be
written (through transition flow diagrams and graphical functions), this
usage results in goto statements and multiple function return statements.
HDL does not support either goto statements or multiple function return
statements.

• Select the Execute (enter) Chart At Initialization chart property.
This option executes the update chart function immediately following
chart initialization. The option is required for HDL because outputs must
be available at time 0 (hardware reset). You must select this option for
bit-true HDL code generation.
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Generate HDL for Mealy and Moore Finite State Machines

In this section...

“Overview” on page 19-13

“Generating HDL for a Mealy Finite State Machine” on page 19-14

“Generating HDL Code for a Moore Finite State Machine” on page 19-18

Overview
Stateflow charts support modeling of three types of state machines:

• Classic (default)

• Mealy

• Moore

This section discusses issues you should consider when generating HDL code
for Mealy and Moore state machines.

Mealy and Moore state machines differ in the following ways:

• The outputs of a Mealy state machine are a function of the current state
and inputs.

• The outputs of a Moore state machine are a function of the current state
only.

Moore and Mealy state charts can be functionally equivalent; an equivalent
Mealy chart can derive from a Moore chart, and vice versa. A Mealy state
machine has a richer description and usually requires a smaller number of
states.

The principal advantages of using Mealy or Moore charts as an alternative
to Classic charts are:

• At compile time, Mealy and Moore charts are validated for conformance to
their formal definitions and semantic rules, and violations are reported.
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• Moore charts generate more efficient code than Classic charts, for both
C and HDL targets.

The execution of a Mealy or Moore chart at time t is the evaluation of the
function represented by that chart at time t. The initialization property for
output defines every output at every time step. Specifically, the output of a
Mealy or Moore chart at one time step must not depend on the output of the
chart at an earlier time step.

Consider the outputs of a chart. Stateflow charts permit output latching. That
is, the value of an output computed at time t persists until time t+d, when it
is overwritten. The output latching feature corresponds to registered outputs.
Therefore, Mealy and Moore charts intended for HDL code generation should
not use registered outputs.

Generating HDL for a Mealy Finite State Machine
When generating HDL code for a chart that models a Mealy state machine,
make sure that:

• The chart meets the general code generation requirements, as described in
“Requirements for Stateflow HDL Code Generation” on page 19-4.

• Actions are associated with inner and outer transitions only.

In addition, for better synthesis results and more readable HDL code, we
recommend selecting the chart property Initialize Outputs Every Time
Chart Wakes Up, as shown in the following figure.
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Mealy actions are associated with transitions. In Mealy machines, output
computation is expected to be driven by the change on inputs. In fact,
the dependence of output on input is the fundamental distinguishing
factor between the formal definitions of Mealy and Moore machines. The
requirement that actions be given on transitions is to some degree stylistic,
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rather than required, to enforce Mealy semantics. However, it is natural that
output computation follows input conditions on input, because transition
conditions are primarily input conditions in any machine type.

The following figure shows an example of a chart that models a Mealy state
machine.

The following code example lists the Verilog code generated for the Mealy
chart.

always @(posedge clk or posedge reset)

begin : MealyChart_1_process

if (reset == 1'b1) begin

is_MealyChart <= IN_s0;

end

else begin

if (enb) begin

is_MealyChart <= is_MealyChart_next;

end

end
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end

always @* begin

is_MealyChart_next = is_MealyChart;

seqFound_1 = 1'b0;

state_1 = 0.0;

case ( is_MealyChart)

IN_s0 :

begin

if (u_double == 1.0) begin

state_1 = 1.0;

is_MealyChart_next = IN_s1;

end

end

IN_s1 :

begin

if (u_double == 2.0) begin

state_1 = 2.0;

is_MealyChart_next = IN_s12;

end

else if (u_double != 1.0) begin

state_1 = 0.0;

is_MealyChart_next = IN_s0;

end

end

IN_s12 :

begin

if (u_double == 1.0) begin

state_1 = 3.0;

is_MealyChart_next = IN_s121;

end

else begin

state_1 = 0.0;

is_MealyChart_next = IN_s0;

end

end

IN_s121 :

begin

if (u_double == 1.0) begin
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state_1 = 1.0;

is_MealyChart_next = IN_s1;

end

else if (u_double == 3.0) begin

state_1 = 4.0;

seqFound_1 = 1'b1;

is_MealyChart_next = IN_s1213;

end

else if (u_double == 2.0) begin

state_1 = 2.0;

is_MealyChart_next = IN_s12;

end

else begin

state_1 = 0.0;

is_MealyChart_next = IN_s0;

end

end

default :

begin

if (u_double == 1.0) begin

state_1 = 1.0;

seqFound_1 = 1'b0;

is_MealyChart_next = IN_s1;

end

else begin

state_1 = 0.0;

seqFound_1 = 1'b0;

is_MealyChart_next = IN_s0;

end

end

endcase

end

Generating HDL Code for a Moore Finite State
Machine
When generating HDL code for a chart that models a Moore state machine,
make sure that:
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• The chart meets the general code generation requirements, as described in
“Requirements for Stateflow HDL Code Generation” on page 19-4.

• Actions occur in states only. These actions are unlabeled, and execute
when exiting the states or remaining in the states.

Moore actions must be associated with states, because output computation
must be dependent only on states, not input. Therefore, the current
configuration of active states at time step t determines output. Thus, the
single action in a Moore state serves as both during and exit action. If
state S is active when a chart wakes up at time t, it contributes to the
output whether it remains active into time t+1 or not.

• Local data and graphical functions are not used.

Function calls and local data are not allowed in a Moore chart. This
prevents output from depending on input in ways that would be difficult for
the HDL code generator to verify. These restrictions strongly encourage
coding practices that separate output and input.

• No references to input occur outside of transition conditions.

• Output computation occurs only in leaf states.

The chart’s top-down semantics compute outputs as if actions were
evaluated strictly before inner and outer flow diagrams.

In addition, for better synthesis results and more readable HDL code, we
recommend selecting the chart property Initialize Outputs Every Time
Chart Wakes Up, as shown in the following figure.
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The following figure shows a Stateflow chart of a Moore state machine.
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The following code example illustrates generated VHDL code for the Moore
chart.

MooreChart_1_process : PROCESS (clk, reset)

BEGIN

IF reset = '1' THEN

is_MooreChart <= IN_s0;

ELSIF clk'EVENT AND clk = '1' THEN

IF enb = '1' THEN

is_MooreChart <= is_MooreChart_next;

END IF;

END IF;

END PROCESS MooreChart_1_process;

MooreChart_1_output : PROCESS (is_MooreChart, u)

BEGIN

is_MooreChart_next <= is_MooreChart;

seqFound <= '0';

19-21



19 Stateflow® HDL Code Generation Support

state <= 0.0;

CASE is_MooreChart IS

WHEN IN_s0 =>

state <= 0.0;

seqFound <= '0';

WHEN IN_s1 =>

state <= 1.0;

seqFound <= '0';

WHEN IN_s12 =>

state <= 2.0;

WHEN IN_s121 =>

state <= 3.0;

WHEN OTHERS =>

state <= 4.0;

seqFound <= '1';

END CASE;

CASE is_MooreChart IS

WHEN IN_s0 =>

IF u = 1.0 THEN

is_MooreChart_next <= IN_s1;

END IF;

WHEN IN_s1 =>

IF u = 2.0 THEN

is_MooreChart_next <= IN_s12;

ELSIF u /= 1.0 THEN

is_MooreChart_next <= IN_s0;

END IF;

WHEN IN_s12 =>

IF u = 1.0 THEN

is_MooreChart_next <= IN_s121;

ELSE

is_MooreChart_next <= IN_s0;

END IF;

WHEN IN_s121 =>

IF u = 1.0 THEN

is_MooreChart_next <= IN_s1;

ELSIF u = 3.0 THEN
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is_MooreChart_next <= IN_s1213;

ELSIF u = 2.0 THEN

is_MooreChart_next <= IN_s12;

ELSE

is_MooreChart_next <= IN_s0;

END IF;

WHEN OTHERS =>

IF u = 1.0 THEN

is_MooreChart_next <= IN_s1;

ELSE

is_MooreChart_next <= IN_s0;

END IF;

END CASE;

END PROCESS MooreChart_1_output;
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Structure a Model for HDL Code Generation
In general, generation of VHDL or Verilog code from a model containing a
Stateflow chart does not differ greatly from HDL code generation from other
models.

A chart intended for HDL code generation must be part of a subsystem that
represents the Device Under Test (DUT). The DUT corresponds to the top
level VHDL entity or Verilog module for which code is generated, tested and
eventually synthesized. The top level Simulink components that drive the
DUT correspond to the behavioral test bench.

You may need to restructure your models to meet this requirement. If the
chart for which you want to generate code is at the root level of your model,
embed the chart in a subsystem and connect the relevant signals to the
subsystem inputs and outputs. In most cases, you can do this by simply
clicking on the chart and then selecting Diagram > Subsystem & Model
Reference > Create Subsystem from Selection in the model window.
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Design Patterns Using Advanced Chart Features

In this section...

“Temporal Logic” on page 19-25

“Graphical Function” on page 19-27

“Hierarchy and Parallelism” on page 19-29

“Stateless Charts” on page 19-30

“Truth Tables” on page 19-32

Temporal Logic
Stateflow temporal logic operators (such as after, before, or every) are
Boolean operators that operate on recurrence counts of Stateflow events.
Temporal logic operators can appear only in conditions on transitions that
originate from states, and in state actions. Although temporal logic does not
introduce new events into a Stateflow model, it is useful to think of the change
of value of a temporal logic condition as an event. You can use temporal logic
operators in many cases where a counter is required. A common use case
would be to use temporal logic to implement a time-out counter.

Note Absolute-time temporal logic is not supported for HDL code generation.

For detailed information about temporal logic, see “Control Chart Execution
Using Temporal Logic”.

The chart shown in the following figure uses temporal logic in a design for a
debouncer. Instead of instantaneously switching between on and off states,
the chart uses two intermediate states and temporal logic to ignore transients.
The transition is committed based on a time-out.
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The following code excerpt shows VHDL code generated from this chart.

Chart_1_output : PROCESS (is_Chart, u, temporalCounter_i1, y_reg)

VARIABLE temporalCounter_i1_temp : unsigned(7 DOWNTO 0);

BEGIN

temporalCounter_i1_temp := temporalCounter_i1;

is_Chart_next <= is_Chart;

y_reg_next <= y_reg;

IF temporalCounter_i1 < 7 THEN

temporalCounter_i1_temp := temporalCounter_i1 + 1;

END IF;

CASE is_Chart IS

WHEN IN_tran1 =>
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IF u = 1.0 THEN

is_Chart_next <= IN_on;

y_reg_next <= 1.0;

ELSIF temporalCounter_i1_temp >= 3 THEN

is_Chart_next <= IN_off;

y_reg_next <= 0.0;

END IF;

WHEN IN_tran2 =>

IF temporalCounter_i1_temp >= 5 THEN

is_Chart_next <= IN_on;

y_reg_next <= 1.0;

ELSIF u = 0.0 THEN

is_Chart_next <= IN_off;

y_reg_next <= 0.0;

END IF;

WHEN IN_off =>

IF u = 1.0 THEN

is_Chart_next <= IN_tran2;

temporalCounter_i1_temp := to_unsigned(0, 8);

END IF;

WHEN OTHERS =>

IF u = 0.0 THEN

is_Chart_next <= IN_tran1;

temporalCounter_i1_temp := to_unsigned(0, 8);

END IF;

END CASE;

temporalCounter_i1_next <= temporalCounter_i1_temp;

END PROCESS Chart_1_output;

Graphical Function
A graphical function is a function defined graphically by a flow diagram.
Graphical functions reside in a chart along with the diagrams that invoke
them. Like MATLAB functions and C functions, graphical functions can
accept arguments and return results. Graphical functions can be invoked in
transition and state actions.

The following figure shows a graphical function that implements a 64–by–64
counter.
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The following code excerpt shows VHDL code generated for this graphical
function.

x64_counter_sf : PROCESS (x, y, outx_reg, outy_reg)

-- local variables

VARIABLE x_temp : unsigned(7 DOWNTO 0);

VARIABLE y_temp : unsigned(7 DOWNTO 0);

BEGIN

outx_reg_next <= outx_reg;

outy_reg_next <= outy_reg;

x_temp := x;

y_temp := y;

x_temp := tmw_to_unsigned(tmw_to_unsigned(tmw_to_unsigned(x_temp, 9), 10)
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+ tmw_to_unsigned(to_unsigned(1, 9), 10), 8);

IF x_temp < to_unsigned(64, 8) THEN

NULL;

ELSE

x_temp := to_unsigned(0, 8);

y_temp := tmw_to_unsigned(tmw_to_unsigned(tmw_to_unsigned(y_temp, 9), 10)

+ tmw_to_unsigned(to_unsigned(1, 9), 10), 8);

IF y_temp < to_unsigned(64, 8) THEN

NULL;

ELSE

y_temp := to_unsigned(0, 8);

END IF;

END IF;

outx_reg_next <= x_temp;

outy_reg_next <= y_temp;

x_next <= x_temp;

y_next <= y_temp;

END PROCESS x64_counter_sf;

Hierarchy and Parallelism
Stateflow charts support both hierarchy (states containing other states) and
parallelism (multiple states that can be active simultaneously).

In Stateflow semantics, parallelism is not synonymous with concurrency.
Parallel states can be active simultaneously, but they are executed
sequentially according to their execution order. (Execution order is displayed
on the upper right corner of a parallel state).

For detailed information on hierarchy and parallelism, see “Stateflow
Hierarchy of Objects” and “Execution Order for Parallel States”.

For HDL code generation, an entire chart maps to a single output computation
process. Within the output computation process:

• The execution of parallel states proceeds sequentially.
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• Nested hierarchical states map to nested CASE statements in the generated
HDL code.

Stateless Charts
Charts consisting of pure flow diagrams (i.e., charts without states ) are useful
in capturing if-then-else constructs used in procedural languages like C.

As an example, consider the following logic, expressed in C-like pseudocode.

if(U1==1) {
if(U2==1) {

Y = 1;
}else{

Y = 2;
}

}else{
if(U2<2) {

Y = 3;
}else{

Y = 4;
}

}

The following figure shows the flow diagram that implements the
if-then-else logic.
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The following generated VHDL code excerpt shows the nested IF-ELSE
statements obtained from the flow diagram.

Chart : PROCESS (Y1_reg, Y2_reg, U1, U2)

-- local variables

BEGIN

Y1_reg_next <= Y1_reg;

Y2_reg_next <= Y2_reg;

IF unsigned(U1) = to_unsigned(1, 8) THEN

IF unsigned(U2) = to_unsigned(1, 8) THEN

Y1_reg_next <= to_unsigned(1, 8);

ELSE

Y1_reg_next <= to_unsigned(2, 8);

END IF;

ELSIF unsigned(U2) < to_unsigned(2, 8) THEN

Y1_reg_next <= to_unsigned(3, 8);
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ELSE

Y1_reg_next <= to_unsigned(4, 8);

END IF;

Y2_reg_next <= tmw_to_unsigned(tmw_to_unsigned(tmw_to_unsigned(unsigned(U1), 9),10)

+ tmw_to_unsigned(tmw_to_unsigned(unsigned(U2), 9), 10), 8);

END PROCESS Chart;

Truth Tables
The coder supports HDL code generation for:

• Truth Table functions within a Stateflow chart

• Truth Table blocks in Simulink models

This section examines a Truth Table function in a chart, and the VHDL code
generated for the chart.

Truth Tables are well-suited for implementing compact combinatorial logic. A
typical application for Truth Tables is to implement nonlinear quantization or
threshold logic. Consider the following logic:

Y = 1 when 0 <= U <= 10
Y = 2 when 10 < U <= 17
Y = 3 when 17 < U <= 45
Y = 4 when 45 < U <= 52
Y = 5 when 52 < U

A stateless chart with a single call to a Truth Table function can represent
this logic succinctly.

The following figure shows the quantizer chart, containing the Truth Table.
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The following figure shows the threshold logic, as displayed in the Truth
Table Editor.
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The following code excerpt shows VHDL code generated for the quantizer
chart.

quantizer : PROCESS (Y_reg, U)

-- local variables

VARIABLE aVarTruthTableCondition_1 : std_logic;

VARIABLE aVarTruthTableCondition_2 : std_logic;

VARIABLE aVarTruthTableCondition_3 : std_logic;

VARIABLE aVarTruthTableCondition_4 : std_logic;

BEGIN

Y_reg_next <= Y_reg;

-- Condition #1

aVarTruthTableCondition_1 := tmw_to_stdlogic(unsigned(U) <= to_unsigned(10, 8));

-- Condition #2

aVarTruthTableCondition_2 := tmw_to_stdlogic(unsigned(U) <= to_unsigned(17, 8));

-- Condition #3

aVarTruthTableCondition_3 := tmw_to_stdlogic(unsigned(U) <= to_unsigned(45, 8));

-- Condition #4

aVarTruthTableCondition_4 := tmw_to_stdlogic(unsigned(U) <= to_unsigned(52, 8));

IF tmw_to_boolean(aVarTruthTableCondition_1) THEN

-- D1

-- Action 1

Y_reg_next <= to_unsigned(1, 8);

ELSIF tmw_to_boolean(aVarTruthTableCondition_2) THEN

-- D2

-- Action 2

Y_reg_next <= to_unsigned(2, 8);

ELSIF tmw_to_boolean(aVarTruthTableCondition_3) THEN

-- D3

-- Action 3

Y_reg_next <= to_unsigned(3, 8);

ELSIF tmw_to_boolean(aVarTruthTableCondition_4) THEN

-- D4

-- Action 4

Y_reg_next <= to_unsigned(4, 8);

ELSE

-- Default

-- Action 5

Y_reg_next <= to_unsigned(5, 8);
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END IF;

END PROCESS quantizer;

Note When generating code for a Truth Table block in a Simulink model, the
coder writes a separate entity/architecture file for the Truth Table code. The
file is named Truth_Table.vhd (for VHDL) or Truth_Table.v (for Verilog).
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HDL Applications for the MATLAB Function Block
The MATLAB Function block contains a MATLAB function in a model. The
function’s inputs and outputs are represented by ports on the block, which
allow you to interface your model to the function code. When you generate
HDL code for a MATLAB Function block, the coder generates two main
HDL code files:

• A file containing entity and architecture code that implement the actual
algorithm or computations generated for the MATLAB Function block.

• A file containing an entity definition and RTL architecture that provide a
black box interface to the algorithmic code generated for the MATLAB
Function block.

The structure of these code files is analogous to the structure of the model,
in which a subsystem provides an interface between the root model and the
function in the MATLAB Function block.

The MATLAB Function block supports a subset of the MATLAB language that
is well-suited to HDL implementation of various DSP and telecommunications
algorithms, such as:

• Sequence and pattern generators

• Encoders and decoders

• Interleavers and deinterleavers

• Modulators and demodulators

• Multipath channel models; impairment models

• Timing recovery algorithms

• Viterbi algorithm; Maximum Likelihood Sequence Estimation (MLSE)

• Adaptive equalizer algorithms
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Viterbi Decoder with the MATLAB Function Block
hdlcoderviterbi2 models a Viterbi decoder, incorporating an MATLAB
Function block for use in simulation and HDL code generation. To open the
model, type the following at the MATLAB command prompt:

hdlcoderviterbi2
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Code Generation from a MATLAB Function Block

In this section...

“Counter Model Using the MATLAB Function block” on page 20-4

“Setting Up” on page 20-7

“Creating the Model and Configuring General Model Settings” on page 20-8

“Adding a MATLAB Function Block to the Model” on page 20-8

“Set Fixed-Point Options for the MATLAB Function Block” on page 20-10

“Programming the MATLAB Function Block” on page 20-14

“Constructing and Connecting the DUT_eML_Block Subsystem” on page
20-15

“Compiling the Model and Displaying Port Data Types” on page 20-18

“Simulating the eml_hdl_incrementer_tut Model” on page 20-19

“Generating HDL Code” on page 20-20

Counter Model Using the MATLAB Function block
In this tutorial, you construct and configure a simple model,
eml_hdl_incrementer_tut, and then generate VHDL code from the
model. eml_hdl_incrementer_tut includes a MATLAB Function block
that implements a simple fixed-point counter function, incrementer. The
incrementer function is invoked once during each sample period of the
model. The function maintains a persistent variable count, which is either
incremented or reinitialized to a preset value (ctr_preset_val), depending
on the value passed in to the ctr_preset input of the MATLAB Function
block. The function returns the counter value (counter) at the output of the
MATLAB Function block.

The MATLAB Function block resides in a subsystem, DUT_eML_Block. The
subsystem functions as the device under test (DUT) from which you generate
HDL code.
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The root-level model drives the subsystem and includes Display and To
Workspace blocks for use in simulation. (The Display and To Workspace
blocks do not generate HDL code.)
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Tip If you do not want to construct the model step by step, or do not have
time, you can open the completed model by entering the name at the command
prompt:

eml_hdl_incrementer

After you open the model, save a copy of it to your local folder as
eml_hdl_incrementer_tut.

The Incrementer Function Code
The following code listing gives the complete incrementer function definition:

function counter = incrementer(ctr_preset, ctr_preset_val)

% The function incrementer implements a preset counter that counts

% how many times this block is called.

%

% This example function shows how to model memory with persistent variables,

% using fimath settings suitable for HDL. It also demonstrates MATLAB

% operators and other language features that HDL Coder supports

% for code generation from Embedded MATLAB Function block.

%

% On the first call, the result 'counter' is initialized to zero.

% The result 'counter' saturates if called more than 2^14-1 times.

% If the input ctr_preset receives a nonzero value, the counter is

% set to a preset value passed in to the ctr_preset_val input.

persistent current_count;

if isempty(current_count)

% zero the counter on first call only

current_count = uint32(0);

end

counter = getfi(current_count);

if ctr_preset

% set counter to preset value if input preset signal is nonzero
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counter = ctr_preset_val;

else

% otherwise count up

inc = counter + getfi(1);

counter = getfi(inc);

end

% store counter value for next iteration

current_count = uint32(counter);

function hdl_fi = getfi(val)

nt = numerictype(0,14,0);

fm = hdlfimath;

hdl_fi = fi(val, nt, fm);

Setting Up
Before you begin building the example model, set up a working folder for your
model and generated code.

Setting Up a folder

1 Start MATLAB.

2 Create a folder named eml_tut, for example:

mkdir D:\work\eml_tut

The eml_tut folder stores the model you create, and also contains
subfolders and generated code. The location of the folder does not matter,
except that it should not be within the MATLAB tree.

3 Make the eml_tut folder your working folder, for example:

cd D:\work\eml_tut
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Creating the Model and Configuring General Model
Settings
In this section, you create a model and set some parameters to values
recommended for HDL code generation hdlsetup.m command. The hdlsetup
command uses the set_param function to set up models for HDL code
generation quickly and consistently. See “Initializing Model Parameters with
hdlsetup” for further information about hdlsetup.

To set the model parameters:

1 Create a new model.

2 Save the model as eml_hdl_incrementer_tut.

3 At the MATLAB command prompt, type:

hdlsetup('eml_hdl_incrementer_tut');

4 Open the Configuration Parameters dialog box.

5 Set the following Solver options, which are useful in simulating this model:

• Fixed step size: 1

• Stop time: 5

6 Click OK to save your changes and close the Configuration Parameters
dialog box.

7 Save your model.

Adding a MATLAB Function Block to the Model

1 Open the Simulink Library Browser. Then, select the
Simulink/User-Defined Functions library.

2 Select the MATLAB Function block from the library window and add it
to the model.
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3 Change the block label from MATLAB Function to eml_inc_block.
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4 Save the model.

5 Close the Simulink Library Browser.

Set Fixed-Point Options for the MATLAB Function
Block
This section describes how to set up the FIMATH specification and other
fixed-point options that are recommended for efficient HDL code generation
from the MATLAB Function block. The recommended settings are:

• ProductMode property of the FIMATH specification: 'FullPrecision'
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• SumMode property of the FIMATH specification: 'FullPrecision'

• Treat these inherited signal types as fi objects option: Fixed-point
(This is the default setting.)

Configure the options as follows:

1 Open the eml_hdl_incrementer_tut model that you created in “Adding a
MATLAB Function Block to the Model” on page 20-8.

2 Double-click the MATLAB Function block to open it for editing. The
MATLAB Function Block Editor appears.

3 Click Edit Data. The Ports and Data Manager dialog box opens, displaying
the default FIMATH specification and other properties for the MATLAB
Function block.

20-11



20 Generating HDL Code with the MATLAB Function Block

4 Select Specify Other. Selecting this option enables the MATLAB
Function block fimath text entry field.

5 The hdlfimath.m function is a utility that defines a FIMATH specification
that is optimized for HDL code generation. Replace the default MATLAB
Function block fimath specification with a call to hdlfimath as follows:

hdlfimath;
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6 Click Apply. The MATLAB Function block properties should now appear
as shown in the following figure.

7 Close the Ports and Data Manager.

8 Save the model.
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Programming the MATLAB Function Block
The next step is add code to the MATLAB Function block to define the
incrementer function, and then use diagnostics to check for errors.

1 Open the eml_hdl_incrementer_tut model that you created in “Adding a
MATLAB Function Block to the Model” on page 20-8.

2 Double-click the MATLAB Function block to open it for editing.

3 In the MATLAB Function Block Editor, delete the default code.

4 Copy the complete incrementer function definition from the listing given in
“The Incrementer Function Code” on page 20-6, and paste it into the editor.

5 Save the model. Doing so updates the model window, redrawing the
MATLAB Function block.

Changing the function header of the MATLAB Function block makes the
following changes to the block icon:

• The function name in the middle of the block changes to incrementer.

• The arguments ctr_preset and ctr_preset_val appear as input ports
to the block.

• The return value counter appears as an output port from the block.

6 Resize the block to make the port labels more legible.
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7 Save the model again.

Constructing and Connecting the DUT_eML_Block
Subsystem
This section assumes that you have completed “Programming the MATLAB
Function Block” on page 20-14 without encountering an error. In this section,
you construct a subsystem containing the incrementer function block, to be
used as the device under test (DUT) from which to generate HDL code. You
then set the port data types and connect the subsystem ports to the model.

Constructing the DUT_eML_Block Subsystem
Construct a subsystem containing the incrementer function block as follows:

1 Click the incrementer function block.

2 SelectDiagram > Subsystem &Model Reference > Create Subsystem
from Selection.

A subsystem, labeled Subsystem, is created in the model window.

3 Change the Subsystem label to DUT_eML_Block.

Setting Port Data Types for the MATLAB Function Block

1 Double-click the subsystem to view its interior. As shown in the following
figure, the subsystem contains the incrementer function block, with input
and output ports connected.
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2 Double-click the incrementer function block to open the MATLAB
Function Block Editor.

3 In the editor, click Edit Data to open the Ports and Data Manager.

4 Select the ctr_preset entry in the port list on the left. Click the button
labeled >> to display the Data Type Assistant. Set Mode for this port to
Built in. Set Data type to boolean. Click the button labeled << to close
the Data Type Assistant. Click Apply.

5 Select the ctr_preset_val entry in the port list on the left. Click the
button labeled >> to display the Data Type Assistant. Set Mode for this
port to Fixed point. Set Signedness to Unsigned. Set Word length to
14. Click the button labeled << to close the Data Type Assistant. Click
Apply.

6 Select the counter entry in the port list on the left. Click the button labeled
>> to display the Data Type Assistant. Verify thatMode for this port is set
to Inherit: Same as Simulink. Click the button labeled << to close the
Data Type Assistant. Click Apply.

7 Close the Ports and Data Manager dialog box and the MATLAB Function
Block Editor.

8 Save the model and close the DUT_eML_Block subsystem.
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Connecting Subsystem Ports to the Model
Next, connect the ports of the DUT_eML_Block subsystem to the model as
follows:

1 From the Sources library, add a Constant block to the model. Set the value
of the Constant to 1, and the Output data type to boolean. Change the
block label to Preset.

2 Make a copy of the Preset Constant block. Set its value to 0, and change
its block label to Increment.

3 From the Signal Routing library, add a Manual Switch block to the model.
Change its label to Control. Connect its output to the In1 port of the
DUT_eML_Block subsystem.

4 Connect the Preset Constant block to the upper input of the Control
switch block. Connect the Increment Constant block to the lower input of
the Control switch block.

5 Add a third Constant block to the model. Set the value of the Constant
to 15, and the Output data type to Inherit via back propagation.
Change the block label to Preset Value.

6 Connect the Preset Value Constant block to the In2 port of the
DUT_eML_Block subsystem.

7 From the Sinks library, add a Display block to the model. Connect it to the
Out1 port of the DUT_eML_Block subsystem.

8 From the Sinks library, add a To Workspace block to the model. Route the
output signal from the DUT_eML_Block subsystem to the To Workspace
block.

9 Save the model.

Checking the Function for Errors
Use the built-in diagnostics of MATLAB Function blocks to test for syntax
errors:

1 Open the eml_hdl_incrementer_tut model.
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2 Double-click the MATLAB Function block incrementer to open it for
editing.

3 In the MATLAB Function Block Editor, select Build Model > Build to
compile and build the MATLAB Function block code.

The build process displays some progress messages. These messages include
some warnings, because the ports of the MATLAB Function block are not yet
connected to signals. You can ignore these warnings.

The build process builds an S-function for use in simulation. The build
process includes generation of C code for the S-function. The code generation
messages you see during the build process refer to generation of C code, not
HDL code generation.

When the build concludes without encountering an error, a message
window appears indicating that parsing was successful. If errors are found,
the Diagnostics Manager lists them. See the MATLAB Function block
documentation for information on debugging MATLAB Function block build
errors.

Compiling the Model and Displaying Port Data Types
In this section you enable the display of port data types and then compile
the model. Model compilation verifies the model structure and settings, and
updates the model display.

1 Select Display > Signals & Ports > Port Data Types.

2 Select Simulation > Update Diagram (or press Ctrl+D) to compile the
model. This triggers a rebuild of the code. After the model compiles, the
block diagram updates to show the port data types.
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3 Save the model.

Simulating the eml_hdl_incrementer_tut Model
Start simulation. If required, the code rebuilds before the simulation starts.

After the simulation completes, the Display block shows the final output
value returned by the incrementer function block. For example, given a
Start time of 0, a Stop time of 5, and a zero value at the ctr_preset port,
the simulation returns a value of 6:
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You might want to experiment with the results of toggling the Control switch,
changing the Preset Value constant, and changing the total simulation time.
You might also want to examine the workspace variable simout, which is
bound to the To Workspace block.

Generating HDL Code
In this section, you select the DUT_eML_Block subsystem for HDL code
generation, set basic code generation options, and then generate VHDL code
for the subsystem.

Selecting the Subsystem for Code Generation
Select the DUT_eML_Block subsystem for code generation:

1 Open the Configuration Parameters dialog box and click the HDL Code
Generation pane.

2 Select eml_hdl_incrementer_tut/DUT_eML_Block from the Generate
HDL for list.
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3 Click OK.

Generating VHDL Code
The top-level HDL Code Generation options should now be set as follows:

• The Generate HDL for field specifies the
eml_hdl_incrementer_tut/DUT_eML_Block subsystem for code
generation.

• The Language field specifies (by default) generation of VHDL code.

• The Folder field specifies (by default) that the code generation target
folder is a subfolder of your working folder, named hdlsrc.

Before generating code, select Current Folder from the Layout menu
in the MATLAB Command Window. This displays the Current Folder
browser, which lets you easily access your working folder and the files that
are generated within it.

To generate code:

1 Click the Generate button.

The coder compiles the model before generating code. Depending on model
display options (such as port data types), the appearance of the model
might change after code generation.

2 As code generation proceeds, the coder displays progress messages. The
process should complete with a message like the following:

### HDL Code Generation Complete.

The names of generated VHDL files in the progress messages are
hyperlinked. After code generation completes, you can click these
hyperlinks to view the files in the MATLAB Editor.

3 A folder icon for the hdlsrc folder is now visible in the Current Folder
browser. To view generated code and script files, double-click the hdlsrc
folder icon.
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4 Observe that two VHDL files were generated. The structure of HDL code
generated for MATLAB Function blocks is similar to the structure of code
generated for Stateflow charts and Digital Filter blocks. The VHDL files
that were generated in the hdlsrc folder are:

• eml_inc_blk.vhd: VHDL code. This file contains entity and architecture
code implementing the actual computations generated for the MATLAB
Function block.

• DUT_eML_Block.vhd: VHDL code. This file contains an entity definition
and RTL architecture that provide a black box interface to the code
generated in eml_inc_blk.vhd.

The structure of these code files is analogous to the structure of the model,
in which the DUT_eML_Block subsystem provides an interface between the
root model and the incrementer function in the MATLAB Function block.

The other files generated in the hdlsrc folder are:

• DUT_eML_Block_compile.do: Mentor Graphics ModelSim compilation
script (vcom command) to compile the VHDL code in the two .vhd files.

• DUT_eML_Block_synplify.tcl: Synplify® synthesis script.

• DUT_eML_Block_map.txt: Mapping file. This report file maps generated
entities (or modules) to the subsystems that generated them (see “Trace
Code Using the Mapping File” on page 16-43).

5 To view the generated VHDL code in the MATLAB Editor, double-click the
DUT_eML_Block.vhd or eml_inc_blk.vhd file icons in the Current Folder
browser.
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MATLAB Function Block Design Patterns for HDL

In this section...

“The eml_hdl_design_patterns Library” on page 20-23

“Efficient Fixed-Point Algorithms” on page 20-25

“Model State Using Persistent Variables” on page 20-29

“Creating Intellectual Property with the MATLAB Function Block” on
page 20-30

“Nontunable Parameter Arguments” on page 20-31

“Modeling Control Logic and Simple Finite State Machines” on page 20-31

“Modeling Counters” on page 20-33

“Modeling Hardware Elements” on page 20-35

The eml_hdl_design_patterns Library
The eml_hdl_design_patterns library is an extensive collection of examples
demonstrating useful applications of the MATLAB Function block in HDL
code generation.
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To open the library, type the following command at the MATLAB prompt:

eml_hdl_design_patterns
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You can use many blocks in the library as cookbook examples of various
hardware elements, as follows:

• Copy a block from the library to your model and use it as a computational
unit.

• Copy the code from the block and use it as a local function in an existing
MATLAB Function block.

When you create custom blocks, you can control whether to inline or
instantiate the HDL code generated from MATLAB Function blocks. Use
the Inline MATLAB Function block code check box in the HDL Code
Generation > Global Settings > Coding style section of the Configuration
Parameters dialog box. For more information, see “Inline MATLAB Function
block code” on page 9-74.

Efficient Fixed-Point Algorithms
The MATLAB Function block supports fixed point arithmetic using the
Fixed-Point Designer fi function. This function supports rounding and
saturation modes that are useful for coding algorithms that manipulate
arbitrary word and fraction lengths. The coder supports all fi rounding and
overflow modes.

HDL code generated from the MATLAB Function block is bit-true to MATLAB
semantics. Generated code uses bit manipulation and bit access operators
(for example, Slice, Extend, Reduce, Concat, etc.) that are native to VHDL
and Verilog.

The following discussion shows how HDL code generated from the MATLAB
Function block follows cast-before-sum semantics, in which addition and
subtraction operands are cast to the result type before the addition or
subtraction is performed.

Open the eml_hdl_design_patterns library and select the
Combinatorics/eml_expr block. eml_expr implements a simple expression
containing addition, subtraction, and multiplication operators with differing
fixed point data types. The generated HDL code shows the conversion of this
expression with fixed point operands. The MATLAB Function block uses
the following code:
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% fixpt arithmetic expression
expr = (a*b) - (a+b);

% cast the result to (sfix7_En4) output type
y = fi(expr, 1, 7, 4);

The default fimath specification for the block determines the behavior of
arithmetic expressions using fixed point operands inside the MATLAB
Function block:

fimath(...
'RoundMode', 'ceil',...
'OverflowMode', 'saturate',...
'ProductMode', 'FullPrecision', 'ProductWordLength', 32,...
'SumMode', 'FullPrecision', 'SumWordLength', 32,...
'CastBeforeSum', true)

The data types of operands and output are as follows:

• a: (sfix5_En2)

• b: (sfix5_En3)

• y: (sfix7_En4).

Before HDL code generation, the operation

expr = (a*b) - (a+b);

is broken down internally into the following substeps:

1 tmul = a * b;

2 tadd = a + b;

3 tsub = tmul - tadd;

4 y = tsub;

Based on the fimath settings (see “Design Guidelines for the MATLAB
Function Block” on page 20-37) this expression is further broken down
internally as follows:
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• Based on the specified ProductMode, 'FullPrecision', the output type of
tmul is computed as (sfix10_En5).

• Since the CastBeforeSum property is set to 'true', substep 2 is broken
down as follows:

t1 = (sfix7_En3) a;
t2 = (sfix7_En3) b;
tadd = t1 + t2;

sfix7_En3 is the result sum type after aligning binary points and
accounting for an extra bit to account for possible overflow.

• Based on intermediate types of tmul (sfix10_En5) and tadd (sfix7_En3)
the result type of the subtraction in substep 3 is computed as sfix11_En5.
Accordingly, substep 3 is broken down as follows:

t3 = (sfix11_En5) tmul;
t4 = (sfix11_En5) tadd;
tsub = t3 - t4;

• Finally, the result is cast to a smaller type (sfix7_En4) leading to the
following final expression statements:

tmul = a * b;
t1 = (sfix7_En3) a;
t2 = (sfix7_En3) b;
tadd = t1 + t2;
t3 = (sfix11_En5) tmul;
t4 = (sfix11_En5) tadd;
tsub = t3 - t4;
y = (sfix7_En4) tsub;

The following listings show the generated VHDL and Verilog code from the
eml_expr block.

VHDL code excerpt:

BEGIN

--MATLAB Function 'Subsystem/eml_expr': '<S2>:1'

-- fixpt arithmetic expression

--'<S2>:1:4'
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mul_temp <= signed(a) * signed(b);

sub_cast <= resize(mul_temp, 11);

add_cast <= resize(signed(a & '0'), 7);

add_cast_0 <= resize(signed(b), 7);

add_temp <= add_cast + add_cast_0;

sub_cast_0 <= resize(add_temp & '0' & '0', 11);

expr <= sub_cast - sub_cast_0;

-- cast the result to correct output type

--'<S2>:1:7'

y <= "0111111" WHEN ((expr(10) = '0') AND (expr(9 DOWNTO 7) /= "000"))

OR ((expr(10) = '0') AND (expr(7 DOWNTO 1) = "0111111"))

ELSE

"1000000" WHEN (expr(10) = '1') AND (expr(9 DOWNTO 7) /= "111")

ELSE

std_logic_vector(expr(7 DOWNTO 1) + ("0" & expr(0)));

END fsm_SFHDL;

Verilog code excerpt:

//MATLAB Function 'Subsystem/eml_expr': '<S2>:1'

// fixpt arithmetic expression

//'<S2>:1:4'

assign mul_temp = a * b;

assign sub_cast = mul_temp;

assign add_cast = {a[4], {a, 1'b0}};

assign add_cast_0 = b;

assign add_temp = add_cast + add_cast_0;

assign sub_cast_0 = {{2{add_temp[6]}}, {add_temp, 2'b00}};

assign expr = sub_cast - sub_cast_0;

// cast the result to correct output type

//'<S2>:1:7'

assign y = (((expr[10] == 0) && (expr[9:7] != 0))

|| ((expr[10] == 0) && (expr[7:1] == 63)) ? 7'sb0111111 :

((expr[10] == 1) && (expr[9:7] != 7) ? 7'sb1000000 :

expr[7:1] + $signed({1'b0, expr[0]})));

These code excerpts show that the generated HDL code from the MATLAB
Function block represents the bit-true behavior of fixed point arithmetic
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expressions using high level HDL operators. The HDL code is generated
using HDL coding rules like high level bitselect and partselect replication
operators and explicit sign extension and resize operators.

Model State Using Persistent Variables
In the MATLAB Function block programming model, state-holding elements
are represented as persistent variables. A variable that is declared
persistent retains its value across function calls in software, and across
sample time steps during simulation.

Please note that your MATLAB code must read the persistent variable before
it is written if you want the coder to infer a register in the HDL code. The
coder displays a warning message if your code does not follow this rule.

The following example shows the unit delay block, which delays the input
sample, u, by one simulation time step. u is a fixed-point operand of type
sfix6. u_d is a persistent variable that holds the input sample.

function y = fcn(u)

persistent u_d;

if isempty(u_d)

u_d = fi(-1, numerictype(u), fimath(u));

end

% return delayed input from last sample time hit

y = u_d;

% store the current input to be used later

u_d = u;

Because this code intends for u_d to infer a register during HDL code
generation, u_d is read in the assignment statement, y = u_d, before it
is written in u_d = u.

The coder generates the following HDL code for the unit delay block.

ENTITY Unit_Delay IS

PORT (
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clk : IN std_logic;

clk_enable : IN std_logic;

reset : IN std_logic;

u : IN std_logic_vector(15 DOWNTO 0);

y : OUT std_logic_vector(15 DOWNTO 0));

END Unit_Delay;

ARCHITECTURE fsm_SFHDL OF Unit_Delay IS

BEGIN

initialize_Unit_Delay : PROCESS (clk, reset)

BEGIN

IF reset = '1' THEN

y <= std_logic_vector(to_signed(0, 16));

ELSIF clk'EVENT AND clk = '1' THEN

IF clk_enable = '1' THEN

y <= u;

END IF;

END IF;

END PROCESS initialize_Unit_Delay;

Initialization of persistent variables is moved into the master reset region
in the initialization process.

Refer to the Delays subsystem in the eml_hdl_design_patterns library to
see how vectors of persistent variables can be used to model integer delay,
tap delay, and tap delay vector blocks. These design patterns are useful in
implementing sequential algorithms that carry state between executions of
the MATLAB Function block in a model.

Creating Intellectual Property with the MATLAB
Function Block
The MATLAB Function block helps you author intellectual property and
create alternate implementations of part of an algorithm. By using MATLAB
Function blocks in this way, you can guide the detailed operation of the HDL
code generator even while writing high-level algorithms.
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For example, the subsystem Comparators in the eml_hdl_design_patterns
library includes several alternate algorithms for finding the minimum value
of a vector. The Comparators/eml_linear_min block finds the minimum of
the vector in a linear mode serially. The Comparators/eml_tree_min block
compares the elements in a tree structure. The tree implementation can
achieve a higher clock frequency by adding pipeline registers between the
log2(N) stages. (See eml_hdl_design_patterns/Filters for an example.)

Now consider replacing the simple comparison operation in the Comparators
blocks with an arithmetic operation (for example, addition, subtraction, or
multiplication) where intermediate results must be quantized. Using fimath
rounding settings, you can fine tune intermediate value computations before
intermediate values feed into the next stage. You can use this technique for
tuning the generated hardware or customizing your algorithm.

Nontunable Parameter Arguments
You can declare a nontunable parameter for a MATLAB Function block by
setting its Scope to Parameter in the Ports and Data Manager GUI, and
clearing the Tunable option.

A nontunable parameter does not appear as a signal port on the block.
Parameter arguments for MATLAB Function blocks take their values from
parameters defined in a parent Simulink masked subsystem or from variables
defined in the MATLAB base workspace, not from signals in the Simulink
model.

Only nontunable parameters are supported for HDL code generation. If
you declare parameter arguments in MATLAB Function block code that is
intended for HDL code generation, be sure to clear the Tunable option for
each such parameter argument.

Modeling Control Logic and Simple Finite State
Machines
MATLAB Function block control constructs such as switch/case and
if-elseif-else, coupled with fixed point arithmetic operations let you model
control logic quickly.
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The FSMs/mealy_fsm_blk andFSMs/moore_fsm_blk blocks in the
eml_hdl_design_patterns library provide example implementations of
Mealy and Moore finite state machines in the MATLAB Function block.

The following listing implements a Moore state machine.

function Z = moore_fsm(A)

persistent moore_state_reg;

if isempty(moore_state_reg)

moore_state_reg = fi(0, 0, 2, 0);

end

S1 = 0;

S2 = 1;

S3 = 2;

S4 = 3;

switch uint8(moore_state_reg)

case S1,

Z = true;

if (~A)

moore_state_reg(1) = S1;

else

moore_state_reg(1) = S2;

end

case S2,

Z = false;

if (~A)

moore_state_reg(1) = S1;

else

moore_state_reg(1) = S2;

end

case S3,

Z = false;

if (~A)

moore_state_reg(1) = S2;

else

moore_state_reg(1) = S3;

20-32



MATLAB Function Block Design Patterns for HDL

end

case S4,

Z = true;

if (~A)

moore_state_reg(1) = S1;

else

moore_state_reg(1) = S3;

end

otherwise,

Z = false;

end

In this example, a persistent variable (moore_state_reg) models state
variables. The output depends only on the state variables, thus modeling a
Moore machine.

The FSMs/mealy_fsm_blk block in the eml_hdl_design_patterns library
implements a Mealy state machine. A Mealy state machine differs from a
Moore state machine in that the outputs depend on inputs as well as state
variables.

The MATLAB Function block can quickly model simple state machines
and other control-based hardware algorithms (such as pattern matchers or
synchronization-related controllers) using control statements and persistent
variables.

For modeling more complex and hierarchical state machines with complicated
temporal logic, use a Stateflow chart to model the state machine.

Modeling Counters
To implement arithmetic and control logic algorithms in MATLAB Function
blocks intended for HDL code generation, there are some simple HDL related
coding requirements:

• The top level MATLAB Function block must be called once per time step.

• It must be possible to fully unroll program loops.

• Persistent variables with reset values and update logic must be used to
hold values across simulation time steps.
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• Quantized data variables must be used inside loops.

The following script shows how to model a synchronous up/down counter
with preset values and control inputs. The example provides both master
reset control of persistent state variables and local reset control using block
inputs (e.g. presetClear). The isempty condition enters the initialization
process under the control of a synchronous reset. The presetClear section is
implemented in the output section in the generated HDL code.

Both the up and down case statements implementing the count loop require
that the values of the counter are quantized after addition or subtraction. By
default, the MATLAB Function block automatically propagates fixed-point
settings specified for the block. In this script, however, fixed-point settings for
intermediate quantities and constants are explicitly specified.

function [Q, QN] = up_down_ctr(upDown, presetClear, loadData, presetData)

% up down result

% 'result' syntheses into sequential element

result_nt = numerictype(0,4,0);

result_fm = fimath('OverflowMode', 'saturate', 'RoundMode', 'floor');

initVal = fi(0, result_nt, result_fm);

persistent count;

if isempty(count)

count = initVal;

end

if presetClear

count = initVal;

elseif loadData

count = presetData;

elseif upDown

inc = count + fi(1, result_nt, result_fm);

-- quantization of output

count = fi(inc, result_nt, result_fm);

else

dec = count - fi(1, result_nt, result_fm);
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-- quantization of output

count = fi(dec, result_nt, result_fm);

end

Q = count;

QN = bitcmp(count);

Modeling Hardware Elements
The following code example shows how to model shift registers in MATLAB
Function block code by using the bitsliceget and bitconcat function.
This function implements a serial input and output shifters with a 32–bit
fixed-point operand input. See the Shift Registers/shift_reg_1by32 block
in the eml_hdl_design_patterns library for more details.

function sr_out = fcn(shift, sr_in)

%shift register 1 by 32

persistent sr;

if isempty(sr)

sr = fi(0, 0, 32, 0, 'fimath', fimath(sr_in));

end

% return sr[31]

sr_out = getmsb(sr);

if (shift)

% sr_new[32:1] = sr[31:1] & sr_in

sr = bitconcat(bitsliceget(sr, 31, 1), sr_in);

end

The following code example shows VHDL process code generated for the
shift_reg_1by32 block.

shift_reg_1by32 : PROCESS (shift, sr_in, sr)

BEGIN

sr_next <= sr;

-- MATLAB Function Function 'Subsystem/shift_reg_1by32': '<S2>:1'

--shift register 1 by 32

--'<S2>:1:1
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-- return sr[31]

--'<S2>:1:10'

sr_out <= sr(31);

IF shift /= '0' THEN

--'<S2>:1:12'

-- sr_new[32:1] = sr[31:1] & sr_in

--'<S2>:1:14'

sr_next <= sr(30 DOWNTO 0) & sr_in;

END IF;

END PROCESS shift_reg_1by32;

The Shift Registers/shift_reg_1by64 block shows a 64 bit shifter. In
this case, the shifter uses two fixed point words, to represent the operand,
overcoming the 32–bit word length limitation for fixed-point integers.

Browse the eml_hdl_design_patterns model for other useful hardware
elements that can be easily implemented using the MATLAB Function block.
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Design Guidelines for the MATLAB Function Block

In this section...

“Introduction” on page 20-37

“Use Compiled External Functions With MATLAB Function Blocks” on
page 20-37

“Build the MATLAB Function Block Code First” on page 20-38

“Use the hdlfimath Utility for Optimized FIMATH Settings” on page 20-38

“Use Optimal Fixed-Point Option Settings” on page 20-40

“Set the Output Data Type of MATLAB Function Blocks Explicitly” on
page 20-41

Introduction
This section describes recommended practices when using the MATLAB
Function block for HDL code generation.

By setting MATLAB Function block options as described in this section, you
can significantly increase the efficiency of generated HDL code. See “Set
Fixed-Point Options for the MATLAB Function Block” on page 20-10 for an
example.

Use Compiled External Functions With MATLAB
Function Blocks
The coder supports HDL code generation from MATLAB Function blocks
that include compiled external functions. This feature enables you to write
reusable MATLAB code and call it from multiple MATLAB Function blocks.

Such functions must be defined in files that are on the MATLAB Function
block path. Use the %#codegen compilation directive to indicate that the
MATLAB code is suitable for code generation. See “Function Definition” for
information on how to create, compile, and invoke external functions.
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Build the MATLAB Function Block Code First
Before generating HDL code for a subsystem containing a MATLAB Function
block, build the MATLAB Function block code to check for errors. To build
the code, select Build from the Tools menu in the MATLAB Function Block
Editor (or press CTRL+B).

Use the hdlfimath Utility for Optimized FIMATH
Settings
The hdlfimath.m function is a utility that defines a FIMATH specification
that is optimized for HDL code generation. Replace the default MATLAB
Function block fimath specification with a call to the hdlfimath function,
as shown in the following figure.
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The following listing shows the FIMATH setting defined by hdlfimath.

hdlfm = fimath(...

'RoundMode', 'floor',...

'OverflowMode', 'wrap',...

'ProductMode', 'FullPrecision', 'ProductWordLength', 32,...

'SumMode', 'FullPrecision', 'SumWordLength', 32,...

'CastBeforeSum', true);

20-39



20 Generating HDL Code with the MATLAB Function Block

Note Use of 'floor' rounding mode for signed integer division will cause an
error at code generation time. The HDL division operator does not support
'floor' rounding mode. Use 'round' mode, or else change the signed
integer division operations to unsigned integer division.

Note When the FIMATH OverflowMode property of the FIMATH specification
is set to 'Saturate', HDL code generation is disallowed for the following
cases:

• SumMode is set to 'SpecifyPrecision'

• ProductMode is set to 'SpecifyPrecision'

Use Optimal Fixed-Point Option Settings
Use the default (Fixed-point) setting for the Treat these inherited signal
types as fi objects option , as shown in the following figure.
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Set the Output Data Type of MATLAB Function Blocks
Explicitly
By setting the output data type of a MATLAB Function block explicitly, you
enable optimizations for RAM mapping and pipelining. Avoid inheriting the
output data type for a MATLAB Function block for which you want to enable
optimizations.
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Distributed Pipeline Insertion for MATLAB Function Blocks

In this section...

“Overview” on page 20-42

“Distributed Pipelining in a Multiplier Chain” on page 20-42

Overview
Distributed pipeline insertion is a special optimization for HDL code generated
from MATLAB Function blocks or Stateflow charts. Distributed pipeline
insertion lets you achieve higher clock rates in your HDL applications, at the
cost of some amount of latency caused by the introduction of pipeline registers.

For general information on distributed pipeline insertion, including
limitations, see “DistributedPipelining” on page 11-70.

Distributed Pipelining in a Multiplier Chain
This example shows distributed pipeline insertion in a simple model that
implements a chain of 5 multiplications.

To open the model, enter the following:

mpipe_multichain

The root level model contains a subsystem multi_chain. The multi_chain
subsystem functions as the device under test (DUT) from which to generate
HDL code. The subsystem drives a MATLAB Function block, mult8. The
following figure shows the subsystem.
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The following shows a chain of multiplications as coded in the mult8MATLAB
Function block:

function y = fcn(x1,x2,x3,x4,x5,x6,x7,x8)
% A chained multiplication:
% y = (x1*x2)*(x3*x4)*(x5*x6)*(x7*x8)

y1 = x1 * x2;
y2 = x3 * x4;
y3 = x5 * x6;
y4 = x7 * x8;

y5 = y1 * y2;
y6 = y3 * y4;
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y = y5 * y6;

To apply distributed pipeline insertion to this block, use the HDL Properties
dialog box for the mult8 block. Specify generation of two pipeline stages for the
MATLAB Function block, and enable the distributed pipeline optimization:

In the Configuration Parameters dialog box, the top-level HDL Code
Generation options specify that:

• VHDL code is generated from the subsystem
mpipe_multchain/mult_chain.

• The coder will generate code and display the generated model.
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The insertion of two pipeline stages into the generated HDL code results in
a latency of two clock cycles. In the generated model, a delay of two clock
cycles is inserted before the output of the mpipe_multchain/mult_chain/mult8
subsystem so that simulations of the model reflect the behavior of the
generated HDL code. The following figure shows the inserted Delay block.

The following listing shows the complete architecture section of the generated
code. Comments generated by the coder indicate the pipeline register
definitions.

ARCHITECTURE fsm_SFHDL OF mult8 IS

SIGNAL pipe_var_0_1 : signed(7 DOWNTO 0); -- Pipeline reg from stage 0 to stage 1

SIGNAL b_pipe_var_0_1 : signed(7 DOWNTO 0); -- Pipeline reg from stage 0 to stage 1

SIGNAL c_pipe_var_0_1 : signed(7 DOWNTO 0); -- Pipeline reg from stage 0 to stage 1

SIGNAL d_pipe_var_0_1 : signed(7 DOWNTO 0); -- Pipeline reg from stage 0 to stage 1

SIGNAL pipe_var_1_2 : signed(7 DOWNTO 0); -- Pipeline reg from stage 1 to stage 2

SIGNAL b_pipe_var_1_2 : signed(7 DOWNTO 0); -- Pipeline reg from stage 1 to stage 2

SIGNAL pipe_var_0_1_next : signed(7 DOWNTO 0);

SIGNAL b_pipe_var_0_1_next : signed(7 DOWNTO 0);
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SIGNAL c_pipe_var_0_1_next : signed(7 DOWNTO 0);

SIGNAL d_pipe_var_0_1_next : signed(7 DOWNTO 0);

SIGNAL pipe_var_1_2_next : signed(7 DOWNTO 0);

SIGNAL b_pipe_var_1_2_next : signed(7 DOWNTO 0);

SIGNAL y1 : signed(7 DOWNTO 0);

SIGNAL y2 : signed(7 DOWNTO 0);

SIGNAL y3 : signed(7 DOWNTO 0);

SIGNAL y4 : signed(7 DOWNTO 0);

SIGNAL y5 : signed(7 DOWNTO 0);

SIGNAL y6 : signed(7 DOWNTO 0);

SIGNAL mul_temp : signed(15 DOWNTO 0);

SIGNAL mul_temp_0 : signed(15 DOWNTO 0);

SIGNAL mul_temp_1 : signed(15 DOWNTO 0);

SIGNAL mul_temp_2 : signed(15 DOWNTO 0);

SIGNAL mul_temp_3 : signed(15 DOWNTO 0);

SIGNAL mul_temp_4 : signed(15 DOWNTO 0);

SIGNAL mul_temp_5 : signed(15 DOWNTO 0);

BEGIN

initialize_mult8 : PROCESS (clk, reset)

BEGIN

IF reset = '1' THEN

pipe_var_0_1 <= to_signed(0, 8);

b_pipe_var_0_1 <= to_signed(0, 8);

c_pipe_var_0_1 <= to_signed(0, 8);

d_pipe_var_0_1 <= to_signed(0, 8);

pipe_var_1_2 <= to_signed(0, 8);

b_pipe_var_1_2 <= to_signed(0, 8);

ELSIF clk'EVENT AND clk= '1' THEN

IF clk_enable= '1' THEN

pipe_var_0_1 <= pipe_var_0_1_next;

b_pipe_var_0_1 <= b_pipe_var_0_1_next;

c_pipe_var_0_1 <= c_pipe_var_0_1_next;

d_pipe_var_0_1 <= d_pipe_var_0_1_next;

pipe_var_1_2 <= pipe_var_1_2_next;

b_pipe_var_1_2 <= b_pipe_var_1_2_next;

END IF;

END IF;

END PROCESS initialize_mult8;
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-- This block supports an embeddable subset of the MATLAB language.

-- See the help menu for details.

--y = (x1+x2)+(x3+x4)+(x5+x6)+(x7+x8);

mul_temp <= signed(x1) * signed(x2);

y1 <= "01111111" WHEN (mul_temp(15) = '0') AND (mul_temp(14 DOWNTO 7) /= "00000000")

ELSE "10000000" WHEN (mul_temp(15) = '1') AND (mul_temp(14 DOWNTO 7) /= "11111111")

ELSE mul_temp(7 DOWNTO 0);

mul_temp_0 <= signed(x3) * signed(x4);

y2 <= "01111111" WHEN (mul_temp_0(15) ='0') AND (mul_temp_0(14 DOWNTO 7) /= "00000000")

ELSE "10000000" WHEN (mul_temp_0(15) = '1') AND (mul_temp_0(14 DOWNTO 7) /= "11111111")

ELSE mul_temp_0(7 DOWNTO 0);

mul_temp_1 <= signed(x5) * signed(x6);

y3 <= "01111111" WHEN (mul_temp_1(15) = '0') AND (mul_temp_1(14 DOWNTO 7) /= "00000000")

ELSE "10000000" WHEN (mul_temp_1(15) = '1') AND (mul_temp_1(14 DOWNTO 7) /= "11111111")

ELSE mul_temp_1(7 DOWNTO 0);

mul_temp_2 <= signed(x7) * signed(x8);

y4 <= "01111111" WHEN (mul_temp_2(15)= '0')AND (mul_temp_2(14 DOWNTO 7) /= "00000000")

ELSE "10000000" WHEN (mul_temp_2(15) = '1') AND (mul_temp_2(14 DOWNTO 7) /= "11111111")

ELSE mul_temp_2(7 DOWNTO 0);

mul_temp_3 <= pipe_var_0_1 * b_pipe_var_0_1;

y5 <= "01111111" WHEN (mul_temp_3(15) = '0') AND (mul_temp_3(14 DOWNTO 7)/= "00000000")

ELSE "10000000" WHEN (mul_temp_3(15) = '1') AND (mul_temp_3(14 DOWNTO 7) /= "11111111")

ELSE mul_temp_3(7 DOWNTO 0);

mul_temp_4 <= c_pipe_var_0_1 * d_pipe_var_0_1;

y6 <= "01111111" WHEN (mul_temp_4(15)='0') AND (mul_temp_4(14 DOWNTO 7) /= "00000000")

ELSE "10000000" WHEN (mul_temp_4(15) = '1') AND (mul_temp_4(14 DOWNTO 7) /= "11111111")

ELSE mul_temp_4(7 DOWNTO 0);

mul_temp_5 <= pipe_var_1_2 * b_pipe_var_1_2;
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y <= "01111111" WHEN (mul_temp_5(15) = '0') AND (mul_temp_5(14 DOWNTO 7) /= "00000000")

ELSE "10000000" WHEN (mul_temp_5(15) = '1') AND (mul_temp_5(14 DOWNTO 7) /= "11111111")

ELSE std_logic_vector(mul_temp_5(7 DOWNTO 0));

b_pipe_var_1_2_next <= y6;

pipe_var_1_2_next <= y5;

d_pipe_var_0_1_next <= y4;

c_pipe_var_0_1_next <= y3;

b_pipe_var_0_1_next <= y2;

pipe_var_0_1_next <= y1;

END fsm_SFHDL;
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Limitations for MATLAB Function Block Code Generation
The HDL compatibility checker (checkhdl) performs a basic compatibility
check on the MATLAB Function block. HDL related warnings or errors may
arise during code generation from a MATLAB Function block that is otherwise
valid for simulation. Such errors are reported in a separate message window.

For more information about MATLAB language support and limitations, see
“MATLAB Language Support” on page 20-50.
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MATLAB Language Support
For the MATLAB language subset supported for HDL code generation from a
MATLAB Function block, see:

• “Data Types and Scope” on page 1-2

• “Operators” on page 1-4

• “Control Flow Statements” on page 1-7

• “Persistent Variables” on page 1-9

• “Persistent Array Variables” on page 1-11

• “System Objects” on page 1-21

• “Complex Data Type Support” on page 1-12

• “Fixed-Point Bitwise Functions” on page 1-28

• “Fixed-Point Run-Time Library Functions” on page 1-35
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Generate Scripts for Compilation, Simulation, and
Synthesis

You can enable or disable script generation and customize the names and
content of generated script files using either of the following methods:

• Use the makehdl or makehdltb functions, and pass in property
name/property value arguments, as described in “Properties for Controlling
Script Generation” on page 21-4.

• Set script generation options in the HDL Code Generation > EDA Tool
Scripts pane of the Configuration Parameters dialog box, as described in
“Control Script Generation with the EDA Tool Scripts Pane” on page 21-9.
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Structure of Generated Script Files
A generated EDA script consists of three sections, generated and executed
in the following order:

1 An initialization (Init) phase. The Init phase performs the required setup
actions, such as creating a design library or a project file. Some arguments
to the Init phase are implicit, for example, the top-level entity or module
name.

2 A command-per-file phase (Cmd). This phase of the script is called
iteratively, once per generated HDL file or once per signal. On each call, a
different file or signal name is passed in.

3 A termination phase (Term). This is the final execution phase of the script.
One application of this phase is to execute a simulation of HDL code that
was compiled in the Cmd phase. The Term phase does not take arguments.

The coder generates scripts by passing format strings to the fprintf function.
Using the GUI options (or makehdl and makehdltb properties) summarized
in the following sections, you can pass in customized format strings to the
script generator. Some of these format strings take arguments, such as the
top-level entity or module name, or the names of the VHDL or Verilog files
in the design.

You can use valid fprintf formatting characters. For example, '\n' inserts
a newline into the script file.
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Properties for Controlling Script Generation
This section describes how to set properties in the makehdl or makehdltb
functions to enable or disable script generation and customize the names
and content of generated script files.

Enabling and Disabling Script Generation
The EDAScriptGeneration property controls the generation of script files. By
default, EDAScriptGeneration is set 'on'. To disable script generation, set
EDAScriptGeneration to 'off', as in the following example.

makehdl('sfir_fixed/symmetric_fir,'EDAScriptGeneration','off')

Customizing Script Names
When you generate HDL code, script names are generated by appending a
postfix string to the model or subsystem name system.

When you generate test bench code , script names are generated by appending
a postfix string to the test bench name testbench_tb.

The postfix string depends on the type of script (compilation, simulation,
or synthesis) being generated. The default postfix strings are shown in the
following table. For each type of script, you can define your own postfix using
the associated property.

Script Type Property Default Value

Compilation 'HDLCompileFilePostfix' '_compile.do'

Simulation 'HDLSimFilePostfix' '_sim.do'

Synthesis 'HDLSynthFilePostfix' Depends on the selected
synthesis tool. See
HDLSynthTool.

The following command generates VHDL code for the subsystem system,
specifying a custom postfix string for the compilation script. The name of the
generated compilation script will be system_test_compilation.do.

makehdl('mymodel/system', 'HDLCompileFilePostfix', '_test_compilation.do')
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Customizing Script Code
Using the property name/property value pairs summarized in the following
table, you can pass in customized format strings to makehdl or makehdltb.
The properties are named according to the following conventions:

• Properties that apply to the initialization (Init) phase are identified by the
substring Init in the property name.

• Properties that apply to the command-per-file phase (Cmd) are identified by
the substring Cmd in the property name.

• Properties that apply to the termination (Term) phase are identified by the
substring Term in the property name.

Property Name and Default Description

Name: 'HDLCompileInit'

Default:'vlib %s\n'

Format string passed to fprintf to write the Init
section of the compilation script. The argument is
the contents of the 'VHDLLibraryName' property,
which defaults to'work'. You can override the
default Init string ('vlib work\n' by changing
the value of 'VHDLLibraryName'.

Name: 'HDLCompileVHDLCmd'

Default: 'vcom %s %s\n'

Format string passed to fprintf to write the
Cmd section of the compilation script for VHDL
files. The two arguments are the contents of the
'SimulatorFlags' property and the file name of
the current entity or module. To omit the flags, set
'SimulatorFlags' to '' (the default).

Name: 'HDLCompileVerilogCmd'

Default: 'vlog %s %s\n'

Format string passed to fprintf to write the
Cmd section of the compilation script for Verilog
files. The two arguments are the contents of the
'SimulatorFlags' property and the file name of
the current entity or module. To omit the flags, set
'SimulatorFlags' to '' (the default).

Name:'HDLCompileTerm'

Default:''

Format string passed to fprintf to write the
termination portion of the compilation script.
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Property Name and Default Description

Name: 'HDLSimInit'

Default:

['onbreak resume\n',...
'onerror resume\n']

Format string passed to fprintf to write the
initialization section of the simulation script.

Name: 'HDLSimCmd'

Default: 'vsim -novopt work.%s\n'

Format string passed to fprintf to write the
simulation command. The implicit argument is the
top-level module or entity name.

Name: 'HDLSimViewWaveCmd'

Default: 'add wave sim:%s\n'

Format string passed to fprintf to write the
simulation script waveform viewing command. The
implicit argument adds the signal paths for the
DUT top-level input, output, and output reference
signals.

Name: 'HDLSimTerm'

Default: 'run -all\n'

Format string passed to fprintf to write the Term
portion of the simulation script. The string is a
synthesis project creation command. The implicit
argument is the top-level module or entity name.
The content of the string is specific to the selected
synthesis tool. See HDLSynthTool.

Name: 'HDLSynthInit' Format string passed to fprintf to write the Init
section of the synthesis script. The content of the
string is specific to the selected synthesis tool. See
HDLSynthTool.

Name: 'HDLSynthCmd' Format string passed to fprintf to write the Cmd
section of the synthesis script. The argument is
the file name of the entity or module.The content
of the string is specific to the selected synthesis
tool. See HDLSynthTool.Name: 'HDLSynthTerm' Format string passed to fprintf to write the Term
section of the synthesis script. The content of the
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Property Name and Default Description

string is specific to the selected synthesis tool. See
HDLSynthTool.

Examples
The following example specifies a Mentor Graphics ModelSim command for
the Init phase of a compilation script for VHDL code generated from the
subsystem system.

makehdl(system, 'HDLCompileInit', 'vlib mydesignlib\n')

The following example lists the resultant script, system_compile.do.

vlib mydesignlib
vcom system.vhd

The following example specifies that the coder generate a Xilinx ISE synthesis
file for the subsystem sfir_fixed/symmetric_fir.

makehdl('sfir_fixed/symmetric_fir','HDLSynthTool', 'ISE')

The following listing shows the resultant script, symmetric_fir_ise.tcl.

set src_dir "./hdlsrc"
set prj_dir "synprj"
file mkdir ../$prj_dir
cd ../$prj_dir
project new symmetric_fir.ise
xfile add ../$src_dir/symmetric_fir.vhd
project set family Virtex4
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project set device xc4vsx35
project set package ff668
project set speed -10
process run "Synthesize - XST"
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Control Script Generation with the EDA Tool Scripts Pane
You set options that control generation of script files on the EDA Tool
Scripts pane. These options correspond to the properties described in
“Properties for Controlling Script Generation” on page 21-4.

To view and set EDA Tool Scripts options:

1 Open the Configuration Parameters dialog box.

2 Select the HDL Code Generation > EDA Tool Scripts pane.

3 The Generate EDA scripts option controls the generation of script files.
By default, this option is selected.

If you want to disable script generation, clear this check box and click
Apply.
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4 The list on the left of the EDA Tool Scripts pane lets you select from
several categories of options. Select a category and set the options as
desired. The categories are:

• Compilation script: Options related to customizing scripts for
compilation of generated VHDL or Verilog code. See “Compilation Script
Options” on page 21-10 for further information.

• Simulation script: Options related to customizing scripts for HDL
simulators. See “Simulation Script Options” on page 21-11 for further
information.

• Synthesis script: Options related to customizing scripts for synthesis
tools. See “Synthesis Script Options” on page 21-13 for further
information.

Compilation Script Options
The following figure shows the Compilation script pane, with options set to
their default values.

21-10



Control Script Generation with the EDA Tool Scripts Pane

The following table summarizes the Compilation script options.

Option and Default Description

Compile file postfix’

'_compile.do'

Postfix string appended to the DUT name or test bench
name to form the script file name.

Name: Compile initialization

Default:'vlib %s\n'

Format string passed to fprintf to write the Init
section of the compilation script. The argument is
the contents of the 'VHDLLibraryName' property,
which defaults to'work'. You can override the default
Init string ('vlib work\n' by changing the value of
'VHDLLibraryName'.Name: Compile command for VHDL

Default: 'vcom %s %s\n'

Format string passed to fprintf to write the
Cmd section of the compilation script for VHDL
files. The two arguments are the contents of the
'SimulatorFlags' property option and the filename
of the current entity or module. To omit the flags, set
'SimulatorFlags' to '' (the default).

Name: Compile command for
Verilog

Default: 'vlog %s %s\n'

Format string passed to fprintf to write the
Cmd section of the compilation script for Verilog
files. The two arguments are the contents of the
'SimulatorFlags' property and the filename of
the current entity or module. To omit the flags, set
'SimulatorFlags' to '' (the default).

Name: Compile termination

Default:''

Format string passed to fprintf to write the
termination portion of the compilation script.

Simulation Script Options
The following figure shows the Simulation script pane, with options set to
their default values.
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The following table summarizes the Simulation script options.

Option and Default Description

Simulation file postfix

'_sim.do'

Postfix string appended to the model name or test
bench name to form the simulation script file name.

Simulation initialization

Default:

['onbreak resume\nonerror resume\n']

Format string passed to fprintf to write the
initialization section of the simulation script.
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Option and Default Description

Simulation command

Default: 'vsim -novopt work.%s\n'

Format string passed to fprintf to write the
simulation command. The implicit argument is the
top-level module or entity name.

Simulation waveform viewing
command

Default: 'add wave sim:%s\n'

Format string passed to fprintf to write the
simulation script waveform viewing command. The
top-level module or entity signal names are implicit
arguments.

Simulation termination

Default: 'run -all\n'

Format string passed to fprintf to write the Term
portion of the simulation script.

Synthesis Script Options
The following figure shows the Synthesis script pane, with options set to
their default values. The Choose synthesis tool property defaults to None,
which disables generation of a synthesis script.
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To enable synthesis script generation, select a synthesis tool from the Choose
synthesis tool menu.

When you select a synthesis tool, the coder:

• Enables synthesis script generation.

• Enters a file name postfix (specific to the chosen synthesis tool) into the
Synthesis file postfix field.

• Enters strings (specific to the chosen synthesis tool) into the initialization,
command, and termination fields.
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The following figure shows the default option values entered for the Mentor
Graphics Precision tool.

The following table summarizes the Synthesis script options.

21-15



21 Generating Scripts for HDL Simulators and Synthesis Tools

Option Name Description

Choose synthesis tool
None (default): do not generate a synthesis script
ISE: generate a synthesis script for Xilinx ISE
Libero: generate a synthesis script for Microsemi Libero
Precision: generate a synthesis script for Mentor Graphics
Precision
Quartus: generate a synthesis script for Altera Quartus II
Synplify: generate a synthesis script for Synopsys Synplify
Pro
Custom: generate a custom synthesis script

Synthesis file postfix Your choice of synthesis tool sets the postfix for generated
synthesis file names to one of the following:

_ise.tcl
_libero.tcl
_precision.tcl
_quartus.tcl
_synplify.tcl
_custom.tcl

Synthesis initialization Format string passed to fprintf to write the Init section of
the synthesis script. The default string is a synthesis project
creation command. The implicit argument is the top-level
module or entity name. The content of the string is specific to
the selected synthesis tool.

Synthesis command Format string passed to fprintf to write the Cmd section of
the synthesis script. The argument is the filename of the
entity or module.The content of the string is specific to the
selected synthesis tool.

Synthesis termination Format string passed to fprintf to write the Term section of
the synthesis script.The content of the string is specific to
the selected synthesis tool.
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What Is the HDL Workflow Advisor?
The HDL Workflow Advisor is a tool that supports and integrates the stages
of the FPGA design process, such as:

• Checking the Simulink model for HDL code generation compatibility

• Automatically fixing model settings that are incompatible with HDL code
generation

• Generation of RTL code, RTL test bench, a cosimulation model, or a
combination of these

• Synthesis and timing analysis through integration with third-party
synthesis tools

• Back annotation of the Simulink model with critical path and other
information obtained during synthesis

• Complete automated workflows for selected FPGA development target
devices and xPC Target™, including FPGA-in-the-Loop simulation

22-3



22 Using the HDL Workflow Advisor

Open the HDL Workflow Advisor
To start the HDL Workflow Advisor from a model:

1 Open your model.

2 Select Code > HDL Code > HDL Workflow Advisor.

3 In the System Selector window, select the DUT that you want to review. In
the following figure, the symmetric_fir subsystem is the selected DUT.
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4 Click OK.

The HDL Workflow Advisor initializes and appears.
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To start the HDL Workflow Advisor from the command line, enter
hdladvisor(system), where system is a handle or name of the model or
subsystem that you want to check. For more information, see the hdladvisor
function reference page.
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Using the HDL Workflow Advisor Window
The following figure shows the top-level view of the HDL Workflow Advisor.
The left pane lists the folders in the HDL Workflow Advisor hierarchy. Each
folder represents a group or category of related tasks.
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Expanding the folders shows available tasks in each folder. The following
figure shows the expanded Prepare Model For HDL Code Generation
folder, with the Check Global Settings task selected.

From the left pane, you can select a folder or an individual task. The HDL
Workflow Advisor displays information about the selected folder or task in
the right pane.
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The content of the right pane depends on the selected folder or task. For some
tasks, the right pane contains simple controls for running the task and a
display area for status messages and other task results. For other tasks (for
example, setting code or test bench generation parameters), the right pane
displays many parameter and option settings.

When you right-click a folder or an individual task in the left pane, a context
menu appears. The context menu lets you:

• Select a task or a group of tasks to run sequentially.

• Reset the status of one or more tasks to Not Run. Resetting status enables
you to rerun tasks.

• View context-sensitive help (CSH) for an individual task.
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Save and Restore HDL Workflow Advisor State

In this section...

“How the Save and Restore Process Works” on page 22-10

“Limitations of the Save and Restore Process” on page 22-10

“Save the HDL Workflow Advisor State” on page 22-10

“Restore the HDL Workflow Advisor State” on page 22-12

How the Save and Restore Process Works
By default, the coder saves the state of the most recent HDL Workflow
Advisor session. The next time you activate the HDL Workflow Advisor, it
returns to that state.

You can also save the current settings of the HDL Workflow Advisor to a
named restore point. At a later time, you can restore the same settings by
loading the restore point data into the HDL Workflow Advisor.

Limitations of the Save and Restore Process
The save and restore process has the following limitations:

• Operations that you perform outside the HDL Workflow Advisor is not
included in the save/restore process.

• The state of HDL Workflow Advisor tasks involving third-party tools are
not saved or restored.

Save the HDL Workflow Advisor State
You can create and save a restore point after completion of a task sequence.
For example, the following figure shows the HDL Workflow Advisor after
completion of the Set Target Interface task.
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To save the HDL Workflow Advisor settings:

1 In the HDL Workflow Advisor, select File > Save Restore Point As.

2 In the Name field, enter a name for the restore point.

3 In the Description field, you can add an optional description of the restore
point.
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4 Click Save. The HDL Workflow Advisor saves a restore point of the
current settings.

Restore the HDL Workflow Advisor State
To load a restore point:

1 In the HDL Workflow Advisor, select File > Load Restore Point.
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2 Select the restore point that you want.

3 Click Load.

The HDL Workflow Advisor issues a warning that the restoration will
overwrite current settings.

4 Click Load to load the restore point you selected. The HDL Workflow
Advisor restores the previously saved state.

22-13



22 Using the HDL Workflow Advisor

Fix a Workflow Advisor Warning or Failure
If a task terminates due to a warning or failure condition, the right pane
of the HDL Workflow Advisor shows information about the problems. This
information appears in an Analysis Result subpane. The Analysis Result
subpane also suggests model settings you can use to fix the problems.

Some tasks have an Action subpane that lets you apply the recommended
actions listed in the Analysis Result subpane automatically. In the
following example, the Check Global Settings task has failed, displaying an
incorrect model setting in the Analysis Result pane.
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The Action subpane, below the Analysis Result subpane, contains a
Modify All button. To fix the problems that appear in the Analysis Result
subpane, click the Modify All button.

After you click Modify All, the Analysis Result subpane reports the
changes that were applied. The task is set to a Not Run and enabled state,
enabling you to rerun the task and proceed to the subsequent tasks.
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Tip Review the Analysis Result box before automatically fixing failures. If
you do not want to apply all of the recommended actions, do not click Modify
All to fix warnings or failures.
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View and Save HDL Workflow Advisor Reports

In this section...

“Viewing HDL Workflow Advisor Reports” on page 22-17

“Saving HDL Workflow Advisor Reports” on page 22-21

Viewing HDL Workflow Advisor Reports
When the HDL Workflow Advisor runs tasks, it automatically generates an
HTML report of task results. Each folder in the HDL Workflow Advisor
contains a report for the checks within that folder and its subfolders.

You can access reports by selecting a folder and clicking the link in the
Report subpane. In the following example, the Prepare Model For HDL
Code Generation folder is selected.
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The following report shows typical results for a run of the Prepare Model
For HDL Code Generation tasks.

As you run checks, the HDL Workflow Advisor updates the reports with the
latest information for each check in the folder. A message appears in the
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report when you run the checks at different times. Time stamps indicate
when checks have been run. The time of the current run appears at the top
right of the report. Checks that occurred during previous runs have a time
stamp following the check name.

You can manipulate the report to show only what you are interested in
viewing as follows:

• The check boxes under Run Summary allow you to view only the checks
with the status that you are interested in viewing. For example, you can
remove the checks that have not run by clearing the check box next to
the Not Run status.

• Minimize folder results in the report by clicking the minus sign next to the
folder name. When you minimize a folder, the report updates to display a
run summary for that folder.

You can view the report for a folder automatically each time the folder’s tasks
run. To do this, select Show report after run:
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Saving HDL Workflow Advisor Reports
You can archive an HDL Workflow Advisor report by saving it to a new
location. To save a report:

1 In the HDL Workflow Advisor, navigate to the folder that contains the
report you want to save.

2 Select the folder that you want. The right pane of the HDL Workflow
Advisor shows information about that folder, including a Report subpane.

3 In the Report subpane, click Save As.

4 In the Save As dialog box, navigate to the location where you want to save
the report, and click Save. The HDL Workflow Advisor saves the report
to the new location.

Note If you rerun the HDL Workflow Advisor, the report is updated in the
working folder, not in the save location. You can find the full path to the
report in the title bar of the report window. Typically, the report is within the
working folder: slprj\modeladvisor\HDLAdv_\model_name\DUT_name\.
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Map to an FPGA Floating-Point Library

In this section...

“What is an FPGA Floating-Point Library?” on page 22-22

“Why Map to an FPGA Floating Point Library?” on page 22-22

“Supported Floating-Point Operations” on page 22-22

“Setup for FPGA Floating-Point Library Mapping” on page 22-24

“How to Map to an FPGA Floating-Point Library” on page 22-24

“FPGA Floating-Point Library Mapping Results Analysis” on page 22-26

“Limitations for FPGA Floating-Point Library Mapping” on page 22-26

What is an FPGA Floating-Point Library?
An FPGA floating-point library is a set of floating-point IP blocks that is
optimized for synthesis on specific FPGA hardware.

Altera Megafunctions and Xilinx LogiCORE IP are examples of such libraries.

Why Map to an FPGA Floating Point Library?
Mapping to an FPGA floating-point library enables you to synthesize your
floating-point design without having to do floating-point to fixed-point
conversion. Eliminating the floating-point to fixed-point conversion step has
the following advantages:

• Reduces the loss of data precision.

• Enables you to model a wider dynamic range.

• Saves time by skipping a step in the code generation process.

Supported Floating-Point Operations

Xilinx LogiCORE IP Floating-Point Operation Support
The coder can map to the following Xilinx LogiCORE IP floating-point
operations:
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• add

• subtract

• multiply

• divide

• comparison

• conversion

• square root

Altera Megafunction Floating-Point Operation Support
The coder can map to the following Altera Megafunction floating-point
operations:

• absolute value

• adder

• comparator

• converter

• divider

• exponential

• inverse

• inverse square root

• multiplier

• natural logarithm

• square root

• subtractor

• trigonometric cosine

• trigonometric sine
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Setup for FPGA Floating-Point Library Mapping
To map your floating-point design to an Altera or Xilinx FPGA floating-point
library, you must:

• Know which Altera or Xilinx FPGA you are using.

- If you are using a Xilinx FPGA, set up your Xilinx FPGA floating-point
library tool. See “Xilinx FPGA Floating-Point Library Setup”.

• Set up your FPGA synthesis tool. See “Synthesis Tool Path Setup”.

Note If you are using Altera Quartus 10.1 or 11.0, you must
turn on the AlteraBackwardIncompatibleSinCosPipeline
global property using hdlset_param. For example, to turn on
AlteraBackwardIncompatibleSinCosPipeline for a model, my_dut, enter
the following at the command line:

hdlset_param('my_dut','AlteraBackwardIncompatibleSinCosPipeline','on')

How to Map to an FPGA Floating-Point Library
To map to an FPGA floating-point library:

1 Open the HDL Workflow Advisor.

2 In the left pane, click HDL Workflow Advisor > Set Target > Set
Target Device and Synthesis Tool. The following Set Target Device
and Synthesis Tool pane appears.
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3 For Target workflow, select Generic ASIC/FPGA.

4 Select your Synthesis tool from the dropdown menu. The Set Target
Library (for floating-point synthesis support) checkbox becomes
available.

5 Select the Family, Device, Package, and Speed of your synthesis target.

6 Select Set Target Library (for floating-point synthesis support). A
new task, Set Target Library, appears in the left pane.

7 In the left pane, click Set Target Library to see the following pane.
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8 Select Objective and Block latencies.

9 (For Xilinx devices only) If you wish to enter the path to the pre-compiled
simulation library, select Set Xilinx simulation library path and enter
the Absolute path. Otherwise, the coder automatically detects the
simulation library path.

FPGA Floating-Point Library Mapping Results
Analysis
To see your FPGA floating-point library mapping results, enable generation of
the Resource Utilization Report and Optimization Report before you begin
code generation. To learn how to generate these reports, see “Create and Use
Code Generation Reports” on page 16-2.

The Resource Utilization Report shows the number of target-specific hardware
resources used by your design. To learn more about the Resource Utilization
Report, see “Resource Utilization Report” on page 16-5.

The Optimization Report shows whether the coder was able to meet the
minimum or maximum block latencies you chose from the Set Target Library
pane. To learn more about the Optimization Report, see “Optimization
Report” on page 16-7.

Limitations for FPGA Floating-Point Library Mapping
Data type limitations:
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• Complex data type is not supported.

• Conversion between double and single precision data types is not supported.

Unsupported Simulink blocks:

• MATLAB Function

• Chart

• Truth Table

• FFT

• Lookup Tables

• RAMs

• MinMax

• DTI

• Counters

• Triggered subsystem

Unsupported Simulink block modes:

• Sum with '-' ports.

• Sum with more than 2 inputs.

• Product with more than 2 inputs.

• Switch with a control input other than u2 ~= 0.

• Sum of Elements with an architecture other than Tree.

• Product of Elements with an architecture other than Tree.

Unsupported HDL Workflow Advisor modes:

• Cosimulation

• FPGA-in-the-Loop

• FPGA Turnkey

• xPC Target FPGA I/O
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FPGA Synthesis and Analysis

In this section...

“FPGA Synthesis and Analysis Tasks Overview” on page 22-28

“Creating a Synthesis Project” on page 22-28

“Performing Synthesis, Mapping, and Place and Route” on page 22-30

“Annotating Your Model with Critical Path Information” on page 22-35

FPGA Synthesis and Analysis Tasks Overview
The tasks in the FPGA Synthesis and Analysis folder let you run
third-party FPGA synthesis and analysis tools without leaving the HDL
Workflow Advisor environment. Tasks in this category include:

• Creation of FPGA synthesis projects for supported FPGA synthesis tools

• Launching supported FPGA synthesis tools to perform synthesis, mapping,
and place/route tasks

• Annotation of your original model with critical path information obtained
from the synthesis tools

Note A supported synthesis tool must be installed, and the synthesis tool
executable must be on the system path to perform the tasks in the FPGA
Synthesis and Analysis folder. See “Third-Party Synthesis Tools” for more
information.

Creating a Synthesis Project
The Create Project task does the following:

• Realizes a synthesis project for the tool from the previously generated HDL
code

• Creates a link to the project files in the Result subpane

• (Optional) Launches the synthesis tool and opens the synthesis project
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The following figure shows the Create Project task in an enabled state,
after HDL code generation.

The Create Project task parameters are:

• Project directory: The HDL Workflow Advisor writes the project files to
a subfolder of the hdlsrc folder. You can enter the path to an alternative
folder, or click the Browse button to navigate to the desired folder.

• Additional source files: To include HDL files (or other synthesis files,
such as UCF or SDC files) that the code does not generate in your synthesis
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project, enter the full path to the desired files. Click the Add button to
locate each file.

The following figure shows the HDL Workflow Advisor after passing the
Create Project task. If you want to view the synthesis project, click the
hyperlink in the Result subpane. This link launches the synthesis tool and
opens the synthesis project.

Performing Synthesis, Mapping, and Place and Route

Performing Logic Synthesis
The Perform Logic Synthesis task does the following:
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• Launches the synthesis tool in the background.

• Opens the previously generated synthesis project, compiles HDL code,
synthesizes the design and emits netlists and related files.

• Displays a synthesis log in the Result subpane.

The Perform Logic Synthesis task does not have input parameters. The
following figure shows the HDL Workflow Advisor after passing the Perform
Logic Synthesis task.

Performing Mapping
The Perform Mapping task does the following:
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• Launches the synthesis tool in the background.

• Runs a mapping process that maps the synthesized logic design to the
target FPGA.

• Emits a circuit description file for use in the place and route phase.

• Displays a log in the Result subpane.

If your tool does not support early timing estimation, you can enable Skip
pre-route timing analysis. When this option is enabled, the Annotate
Model with Synthesis Result task sets Critical path source to
post-route.

The following figure shows the HDL Workflow Advisor after passing the
Perform Mapping task.
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Performing Place and Route
The Perform Place and Route task does the following:

• Launches the synthesis tool in the background.

• Runs a place and route process using the circuit description produced
by the mapping process, and emits a circuit description suitable for
programming an FPGA.

• Emits pre- and post-routing timing information for use in critical path
analysis and back annotation of your source model.

• Displays a log in the Result subpane.
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Unlike other tasks in the HDL Workflow Advisor hierarchy, Perform Place
and Route is optional. If you select Skip this task in the right-hand pane,
the HDL Workflow Advisor executes the workflow, but omits the Perform
Place and Route task, marking it Passed. Select Skip this task if you
prefer to do place and route work manually.

If the Perform Place and Route task fails, you can select Ignore place
and route errors to continue to the Annotate Model with Synthesis
Result task. This allows you to use post-mapping timing results to find
critical paths in your model even if place and route fails.

The following figure shows the HDL Workflow Advisor after passing the
Perform Place and Route task.
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Annotating Your Model with Critical Path Information
The Annotate Model with Synthesis Result task helps you identify critical
paths in your model. In this task, you can analyze pre- or post-routing timing
information from the Perform Place and Route task and visually highlight
one or more critical paths in your model.
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Note If the Annotate Model with Synthesis Result task is not available,
clear the check box for Generate FPGA top level wrapper in the Generate
RTL Code and Testbench task.

The following figure shows the Annotate Model with Synthesis Result
task in an enabled state.

The task parameters are:
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• Critical path source: Select pre-route or post-route. The default is
pre-route.

Note that the pre-route option is unavailable when Skip pre-route
timing analysis is enabled in the Perform Mapping task.

• Critical path number: You can annotate up to 3 critical paths. Select the
number of paths you want to annotate. The default is 1.

• Show all paths: Show critical paths, including duplicate paths. The
default is off.

• Show unique paths: Show only the first instance of a path that is
duplicated. The default is off.

• Show delay data: Annotate the cumulative timing delay on each path.
The default is on.

• Show ends only: Show the endpoints of each path, but omit the
connecting signal lines. The default is off.

When the Annotate Model with Synthesis Result task runs to completion,
the coder displays the DUT with critical path information highlighted. The
following figure shows a subsystem after critical path annotation. Using
default options, the annotation includes the endpoints, signal lines, and delay
data.
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After the Annotate Model with Synthesis Result task runs to completion,
the HDL Workflow Advisor enables the Reset Highlighting button in the
Action subpane. When you click this button, the HDL Workflow Advisor:

• Clears critical path annotations from the model.

• Resets the Annotate Model with Synthesis Result task.
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Automated Workflows for Specific Targets and Tools
The HDL Workflow Advisor helps you perform complete automated workflows
for a number of target devices. The Target platformmenu of the Set Target
Device and Synthesis Tool task lists the supported target devices.

After you select the desired target device and configure its I/O interface, you
can let the HDL Workflow Advisor perform the subsequent model checking,
HDL code generation, and FPGA synthesis and analysis tasks, without

22-40



Automated Workflows for Specific Targets and Tools

your intervention. See the following sections for information on automated
workflows for specific types of targets:

• “Generate xPC Target Interface for Speedgoat Boards” on page 22-42

• “Target Xilinx FPGA Development Boards” on page 22-58
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Generate xPC Target Interface for Speedgoat Boards

In this section...

“Select a Speedgoat Target Device” on page 22-42

“Set the Target Interface for Speedgoat Boards” on page 22-45

“Code Generation, Synthesis, and Generation of xPC Target Interface
Subsystem” on page 22-48

This example shows how to generate a hardware-in-the-loop interface for
Speedgoat board programming with xPC Target using the xPC Target
FPGA I/O workflow.

To run this example, you must:

• Have a license for xPC Target software.

• Use Xilinx ISE 10.1.

Select a Speedgoat Target Device

Note Before selecting a Speedgoat target device, see “Third-Party Synthesis
Tools”.

To select a target Speedgoat board:

1 Open the model.

dxpcSGIO301servo_fpga

The ServoSystem subsystem is the device under test (DUT) for HDL code
generation.
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2 Right-click the ServoSystem block, and select HDL Code > HDL
Workflow Advisor.

3 In the HDL Workflow Advisor, select Set Target > Set Target Device
and Synthesis Tool.

4 For Target workflow, select xPC Target FPGA I/O.

On the left, the Set Target Interface and Set Target Frequency steps
appear under Set Target along with the FPGA Synthesis and Analysis
and Download to Target tasks.

5 From the Target platform menu, select the Speedgoat IO301 board.

xPC Target and HDL Workflow Advisor support the same set of Speedgoat
devices. For a list of supported boards, see “FPGA Support”.
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6 Click Run This Task.

After the Set Target Device and Synthesis Tool task is complete, the
HDL Workflow Advisor enables the next task in the hierarchy, Set Target
Interface. After the Set Target Device and Synthesis Tool task runs,
the HDL Workflow Advisor looks like this figure.
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Set the Target Interface for Speedgoat Boards
The Set Target Interface task in the HDL Workflow Advisor enables you to
define how the inputs and outputs of the DUT map to the inputs and outputs
of your Speedgoat target device.
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Using the Target Platform Interface and Bit Range / Address / FPGA
Pin columns, you can allocate each port on the DUT to an I/O resource on
the target device. To allocate ports:

1 In the left pane of the HDL Workflow Advisor, select the Set Target
Interface task.

2 In the Target Platform Interface Table, for each port you want to allocate,
click the Target Platform Interfaces column and select an I/O resource
from the dropdown list. Click Apply.

This figure shows the Target Platform Interface Table for an example
configuration. All ports have been allocated to a PCI Interface address or a
single bit on the TTL I/O Connector.
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Note At least one output port must be allocated to the target device. If all
ports are left unallocated, the Set Target Interface task shows an error
and terminates. For information about the I/O resource options, refer to
the documentation for your target board.

3 Click Run This Task.

4 In the Set Target Frequency task, set your FPGA clock frequency and
click Run This Task.

22-47



22 Using the HDL Workflow Advisor

Code Generation, Synthesis, and Generation of xPC
Target Interface Subsystem
After selecting the target device and configuring its port interface, you can
enable the HDL Workflow Advisor to perform the next sequence of tasks
automatically. These tasks include:

• Prepare Model For HDL Code Generation: Checking the model for
HDL code generation compatibility.

• HDL Code Generation: Setting HDL-related options of the Model
Configuration Parameters dialog box and generating HDL code.

• FPGA Synthesis and Analysis: Executing synthesis and timing analysis
in Xilinx ISE; back annotating the model with critical path information
obtained during synthesis.

• Download to Target : Generating an FPGA programming file and a
model that contains an xPC Target interface subsystem.

Note The Download to Target tasks do not actually download anything
to a target device. They create an interface subsystem that you can plug
into an xPC Target model.

To run this sequence of tasks automatically:

1 Open the Download to Target task group.

2 Right-click Generate xPC Target interface and select Run to Selected
Task.

3 As the Run to Selected Task sequence executes, the HDL Workflow
Advisor displays a progress indicator for each task.

After the task sequence is complete, you see the Result subpane.
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4 The Result pane displays a link to a generated model —
gm_dxpcSGIO301servo_fpga_xpc. Click the link to open the model.
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The model contains the xPC Target interface subsystem. This new
subsystem replaces the DUT (ServoSystem) in the original model. It
replaces the internals of the original DUT with an xPC Target FPGA block
and other blocks to work with the algorithm on the FPGA.

5 Save the gm_dxpcSGIO301servo_fpga_xpc model.

6 To learn how to use the generated model with xPC Target, see “FPGA
Models” in the xPC Target documentation.
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Target Altera FPGA Development Boards

In this section...

“Before You Begin” on page 22-51

“Open the Model” on page 22-51

“Select the Target Device” on page 22-52

“Set Target Interface and Target Frequency” on page 22-53

“Generate Code, Synthesize, and Program Target Device” on page 22-56

This example shows how to target an Altera FPGA development board for
synthesis using the FPGA Turnkey workflow.

The hdlcoderUARTServoControllerExample model is designed to
work with an Altera DE2-115 development and education board. The
UART_Servo_on_FPGA subsystem receives commands through UART ports.
The subsystem generates a pulse width modulation (PWM) waveform to
control a servo motor.

Before You Begin
To run this example, you must have your synthesis tool set up. To learn how
to set up your synthesis tool, see “Synthesis Tool Path Setup”.

This example uses the Altera DE2-115 development and education board. You
can try this example with a different board, and specify the target interface
according to that board’s interface definition. To see a list of boards supported
for the FPGA Turnkey workflow, see “FPGA Turnkey Hardware”.

If you want to download the programming file, you must first connect the
target device. However, if the target device is not connected, you can still
generate the programming file.

Open the Model

1 Add the example directory to your MATLAB path.
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addpath(fullfile(docroot,'toolbox','hdlcoder','examples'))

2 Open the model.

hdlcoderUARTServoControllerExample

Select the Target Device

1 Right-click the UART_Servo_on_FPGA subsystem and select HDL
Code > HDL Workflow Advisor.

2 In the HDL Workflow Advisor, select the Set Target > Set Target Device
and Synthesis Tool task.

3 For Target workflow, select FPGA Turnkey.

4 For Target platform, select Altera DE2-115 development and
education board.

If the board does not automatically appear in the list, select Get more
boards to download the Altera FPGA Boards support package.
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The HDL Workflow Advisor automatically sets the synthesis tool based on
your board selection.

5 Click Run This Task .

Set Target Interface and Target Frequency

1 In the left pane of the HDL Workflow Advisor, select the Set Target
Interface task.
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2 For each port, select an option from the Target Platform Interfaces
menu as shown in the following figure, and click Apply.
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Each port is allocated to a specified bit position [b] or range of bit positions
[lsb:msb]. The width of the specification, in bits, must equal the width of
the port on the DUT. When you select options, the HDL Workflow Advisor
automatically allocates a bit range. You can double-click in the Bit Range
/ Address / FPGA Pin column to edit the value.

For detailed information on each Target Platform Interfaces option,
refer to your board documentation.
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Note You must allocate at least one output port must to the target device.
If you do not allocate any ports, the Set Target Interface task displays an
error and terminates.

3 Click Run This Task.

4 In the Set Target Frequency task, set FPGA system clock frequency
to 100 MHz, then click Run This Task.

In this example, the target frequency must be 100 MHz due to the fixed
UART baud rate.

Generate Code, Synthesize, and Program Target
Device
After selecting the target device and configuring its port interface, the HDL
Workflow Advisor can perform the next sequence of tasks automatically.
These tasks include:

• Prepare Model For HDL Code Generation: Checking the model for
HDL code generation compatibility.

• HDL Code Generation: Setting HDL-related options of the Model
Configuration Parameters dialog box and generating HDL code.

• FPGA Synthesis and Analysis: Executing synthesis and timing analysis
in Xilinx ISE. Back-annotating the model with critical path information
obtained during synthesis.

• Download to Target has two subtasks:

- Generate Programming File: Generating an FPGA programming file.

- Program Target Device: Downloading the programming file to the
board.

To run this sequence of tasks automatically:

1 Open the Download to Target task group.

2 Right-click Program Target device and select Run to Selected Task.
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The task sequence concludes by programming your target board with the
generated programming file. You can then read the code generation and
synthesis log files.
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Target Xilinx FPGA Development Boards

In this section...

“Before You Begin” on page 22-58

“Open the Model” on page 22-58

“Select the Target Device” on page 22-59

“Set Target Interface and Target Frequency” on page 22-60

“Generate Code, Synthesize, and Program Target Device” on page 22-63

This example shows how to target a Xilinx FPGA development board for
synthesis using the FPGA Turnkey workflow.

The hdlcoderUARTServoControllerExample model is designed to work with
a Xilinx Virtex-5 ML506 development board. The UART_Servo_on_FPGA
subsystem receives commands through UART ports. The subsystem generates
a pulse width modulation (PWM) waveform to control a servo motor.

Before You Begin
To run this example, you must have your synthesis tool set up. To learn how
to set up your synthesis tool, see “Synthesis Tool Path Setup”.

This example uses the Xilinx Virtex-5 ML506 development board. You can try
this example with a different board, and specify the target interface according
to that board’s interface definition. To see a list of boards supported for the
FPGA Turnkey workflow, see “FPGA Turnkey Hardware”.

If you want to download the programming file, you must first connect the
target device. However, if the target device is not connected, you can still
generate the programming file.

Open the Model

1 Add the example directory to your MATLAB path.

addpath(fullfile(docroot,'toolbox','hdlcoder','examples'))
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2 Open the model.

hdlcoderUARTServoControllerExample

Select the Target Device

1 Right-click the UART_Servo_on_FPGA subsystem and select HDL
Code > HDL Workflow Advisor.

2 In the HDL Workflow Advisor, select the Set Target > Set Target Device
and Synthesis Tool task.

3 For Target workflow, select FPGA Turnkey.

4 For Target platform, select Xilinx Virtex-5 ML506 development
board.

If the board does not automatically appear in the list, select Get more
boards to download the Xilinx FPGA Boards support package.

The HDL Workflow Advisor automatically sets the synthesis tool based on
your board selection.
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5 Click Run This Task .

Set Target Interface and Target Frequency

1 In the left pane of the HDL Workflow Advisor, select the Set Target
Interface task.
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2 For each port, select an option from the Target Platform Interfaces
menu as shown in the following figure, and click Apply.
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Each port is allocated to a specified bit position [b] or range of bit positions
[lsb:msb]. The width of the specification, in bits, must equal the width of
the port on the DUT. When you select options, the HDL Workflow Advisor
automatically allocates a bit range. You can double-click in the Bit Range
/ Address / FPGA Pin column to edit the value.

For detailed information on each Target Platform Interfaces option, see
your Xilinx Virtex-5 ML506 development board documentation.
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Note You must allocate at least one output port must to the target device.
If you do not allocate any ports, the Set Target Interface task displays an
error and terminates.

3 Click Run This Task.

4 In the Set Target Frequency task, set FPGA system clock frequency
to 100 MHz, then click Run This Task.

In this example, the target frequency must be set to 100MHz (the default)
due to the fixed UART baud rate.

Generate Code, Synthesize, and Program Target
Device
After selecting the target device and configuring its port interface, the HDL
Workflow Advisor can perform the next sequence of tasks automatically.
These tasks include:

• Prepare Model For HDL Code Generation: Checking the model for
HDL code generation compatibility.

• HDL Code Generation: Setting HDL-related options of the Model
Configuration Parameters dialog box and generating HDL code.

• FPGA Synthesis and Analysis: Executing synthesis and timing analysis
in Xilinx ISE. Back-annotating the model with critical path information
obtained during synthesis.

• Download to Target has two subtasks:

- Generate Programming File: Generating an FPGA programming file.

- Program Target Device: Downloading the programming file to the
board.

Tip Before executing the Program Target Device task, make sure
that your host PC is properly connected to the Xilinx Virtex-5 ML506
development board via a JTAG programming cable.
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To run this sequence of tasks automatically:

1 Open the Download to Target task group.

2 Right-click Program Target device and select Run to Selected Task.

The task sequence concludes by programming your target board with the
generated programming file. You can then read the code generation and
synthesis log files.
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Custom IP Core Generation
Using the HDL Workflow Advisor, you can generate a custom IP core from a
model. The generated IP core is sharable and reusable. You can integrate it
with a larger design by adding it in a Xilinx EDK environment.

To learn how to generate a custom IP core from a MATLAB design, see
“Generate a Custom IP Core” on page 22-76.

To learn how to generate a custom IP core from Simulink, see “Generate a
Custom IP Core” on page 22-76.

In this section...

“Custom IP Core Architectures” on page 22-65

“Target Platform Interfaces” on page 22-66

“Processor/FPGA Synchronization” on page 22-67

“Custom IP Core Generated Files” on page 22-67

Custom IP Core Architectures
You can generate an IP core with an AXI4-Lite interface, or with both an
AXI4-Lite and AXI4-Stream Video interfaces.

An IP core with an AXI4-Lite interface:
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An IP core with both an AXI4-Lite interface and AXI4-Stream Video
interfaces:

The Algorithm from MATLAB/Simulink block represents your DUT
subsystem. The coder generates the rest of the IP core based on your target
platform interface settings and processor/FPGA synchronization mode.

Target Platform Interfaces
You can map each port in your DUT to one of the following target platform
interfaces in the IP core:

• AXI4-Lite: Use this interface for ports you want to access through the
AXI4-Lite accessible registers. The coder generates registers and allocates
address offsets for the ports you map to this interface.

• AXI4-Stream Video: Use this interface to send or receive a 32-bit scalar
video data stream.

• External ports: Use external ports to connect to FPGA external IO pins, or
to other IP cores with external ports.

To learn more about the AXI4-Lite and AXI4-Stream Video protocols, refer to
the Xilinx AXI Reference Guide, UG761.
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Processor/FPGA Synchronization
The coder generates synchronization logic in the IP core based on the
processor/FPGA synchronization mode you choose.

When generating a custom IP core, the following processor/FPGA
synchronization options are available:

• Free running (default)

• Coprocessing blocking

To learn more about the processor/FPGA synchronization modes, see
“Processor and FPGA Synchronization” on page 22-80.

Custom IP Core Generated Files
After you generate a custom IP core, the IP core files are in the ipcore
folder within your project folder. Files for each IP core you generate are in a
subfolder, IPCoreName_IPCoreVersion, within the ipcore folder.

The following files are in the IPCoreName_IPCoreVersion folder and its
subfolders:

• IP core definition files (.mpd, .pao).

• HDL source files (.vhd or .v).

• A C header file with the register address map.

• (Optional) An HTML report with instructions for using the core and
integrating the IP core in your EDK project.
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Custom IP Core Report
You generate an HTML custom IP core report by default when you generate
a custom IP core. The report describes the behavior and contents of the
generated custom IP core.

In this section...

“Summary” on page 22-68

“Target Interface Configuration” on page 22-69

“Register Address Mapping” on page 22-70

“IP Core User Guide” on page 22-71

“IP Core File List” on page 22-74

Summary
The Summary section shows your coder settings when you generated the
custom IP core.

The following figure is an example of a Summary section.
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Target Interface Configuration
The Target Interface Configuration section shows how your DUT ports map to
the target hardware interface and the processor/FPGA synchronization mode.

The following figure is an example of a Target Interface Configuration section.
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To learn more about processor/FPGA synchronization modes, see “Processor
and FPGA Synchronization” on page 22-80.

To learn more about target platform interfaces, see “Custom IP Core
Generation” on page 22-65.

Register Address Mapping
The Register Address Mapping section shows the address offsets for AXI4-Lite
bus accessible registers in your custom IP core, and the name of the C header
file that contains the same address offsets.

The following figure is an example of a Register Address Mapping section.
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IP Core User Guide
The IP Core User Guide section gives a high-level overview of the system
architecture, describes the processor and FPGA synchronization mode, and
gives instructions for integrating the IP core into your EDK environment.

The following figure is an example of an IP Core User Guide system
architecture description.
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The following figure is an example of a processor/FPGA synchronization
description.
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The following figure is an example of instructions for integrating the IP core
into your EDK environment.
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IP Core File List
The IP Core File List section lists the files and file folders that comprise your
custom IP core.

The following figure is an example of an IP core file list.
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Hardware and Software Codesign for Xilinx Zynq-7000
Platform

For an example that shows the hardware and software codesign workflow for
the Xilinx Zynq-7000 Platform, see hdlcoder_ip_core_tutorial_zynq.

The example shows how to:

• Set up your Zynq hardware and tools.

• Generate an HDL IP core for your Simulink design.

• Integrate the IP core into an EDK project and program the Zynq hardware.

• Generate and build the embedded software, and run it on the ARM
Cortex®-A9 processor.
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Generate a Custom IP Core

In this section...

“Generate a Generic Custom IP Core” on page 22-76

“Generate a Custom IP Core for the Zynq-7000 Platform” on page 22-77

“Requirements and Limitations for Custom IP Core Generation” on page
22-78

Generate a Generic Custom IP Core
To generate a generic custom IP core to use in a Xilinx EDK environment:

1 Open the HDL Workflow Advisor.

2 In the Set Target > Set Target Device and Synthesis Tool task, for
Target workflow, select IP Core Generation.

3 For Target platform, select Generic Xilinx Platform and click Run
This Task.

If you do not see your target hardware in the dropdown menu, select Get
more to download the target support package.

4 In the Set Target > Set Target Interface task, select a Target Platform
Interface for each port, then click Apply.

You can map each DUT port to one of the following interfaces:

• AXI4-Lite: Use this interface for ports you want to access through
the AXI4-Lite accessible registers. The coder generates registers and
allocates address offsets for the ports you map to this interface.

• AXI4-Stream Video: Use this interface to send or receive a 32-bit
scalar video data stream.

• External Port: Use the external ports to connect to FPGA external IO
pins, or to other IP cores with external ports.

5 In the Generate RTL Code and IP Core task, enable the Generate IP
core report option to generate HTML documentation for the IP core.
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6 If you want to set options in the other tasks, set them.

7 Right-click the Generate RTL Code and IP Core task and select Run to
Selected Task.

The coder generates the IP core files in the specified output folder,
including the HTML documentation.

To learn more about custom IP core generation, see “Custom IP Core
Generation” on page 22-65.

Generate a Custom IP Core for the Zynq-7000
Platform
To generate a custom IP core to target the Xilinx ZC702 or ZedBoard™:

1 Open the HDL Workflow Advisor.

2 In the Set Target > Set Target Device and Synthesis Tool task, for
Target workflow, select IP Core Generation.

3 For Target platform, select Xilinx Zynq ZC702 evaluation kit, or
Zedboard and click Run This Task.

If you do not see your target hardware in the dropdown menu, select Get
more to download the target support package.

4 In the Set Target > Set Target Interface task, select a Target Platform
Interface for each port, then click Apply.

You can map each DUT port to one of the following interfaces:

• AXI4-Lite: Use this interface for ports you want to access through
the AXI4-Lite accessible registers. The coder generates registers and
allocates address offsets for the ports you map to this interface.

• AXI4-Stream Video: Use this interface to send or receive a 32-bit
scalar video data stream.

• External Port: Use the external ports to connect to FPGA external IO
pins, or to other IP cores with external ports.
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• A board-specific interface, such as DIP Switches [0:7], Push Buttons
L-R-U-D-S [0:4], Pmod Connector JA1 [0:7], Pmod Connector JB1
[0:7], Pmod Connector JC1 [0:7], or Pmod Connector JD1 [0:7]. Use
these external ports to connect to external IO pins on the FPGA board.

In the generated IP core, these ports are generic external ports. In
a later step, if you use the HDL Workflow Advisor to integrate the
generated IP core with embedded software in an EDK project, the coder
connects these ports to the board-specific FPGA pins.

5 In the Generate RTL Code and IP Core task, enable the Generate IP
core report option to generate HTML documentation for the IP core.

6 If you want to set options in the other tasks, set them.

7 Right-click the Generate RTL Code and IP Core task and select Run to
Selected Task.

The coder generates the IP core files in the specified output folder,
including the HTML documentation.

To learn more about custom IP core generation, see “Custom IP Core
Generation” on page 22-65.

Requirements and Limitations for Custom IP Core
Generation
To generate a custom IP core, the DUT subsystem must be an atomic system,
and cannot contain Xilinx System Generator blocks.

To map your DUT ports to an AXI4-Lite interface, the input and output
ports must:

• Have a bit width less than or equal to 32 bits.

• Be scalar.

When mapping your DUT ports to an AXI4-Stream Video interface, the
following requirements and limitations apply:

• Ports must have a 32-bit width.
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• Ports must be scalar.

• The model must be single rate.

• You can have a maximum of one input video port and one output video port.

The AXI4-Stream Video interface is not supported in Coprocessing –
blocking processor/FPGA synchronization mode.
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Processor and FPGA Synchronization
In the HDL Workflow Advisor, you can choose a Processor/FPGA
synchronization mode for your processor and FPGA when you:

• Generate a custom IP core to use in a Xilinx EDK project.

• Use the xPC Target FPGA I/O workflow.

The following synchronization modes are available:

• Free running (default)

• Coprocessing blocking

• Coprocessing nonblocking with delay (available only for the xPC
Target FPGA I/O workflow)

Free Running Mode
In free running mode, the processor and FPGA each run nonsynchronized,
continuously, and in parallel.

Select Free running as the Processor/FPGA synchronization mode
when you do not want your processor and FPGA to be automatically
synchronized.

The following diagram shows how the processor and FPGA can communicate
in free running mode. The shaded areas indicate that the processor and
FPGA are running continuously.
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Coprocessing – Blocking Mode
In blocking coprocessor mode, the coder automatically generates
synchronization logic for the FPGA so that the processor and FPGA run in
tandem.

Select Coprocessing – blocking as the Processor/FPGA synchronization
mode when FPGA execution time is short relative to the processor sample
time, and you want the FPGA to complete before the processor continues.

The following diagram shows how the processor and FPGA run in blocking
coprocessing mode.

The shaded areas indicate when the processor and FPGA are running. During
each sample time, the processor writes to the FPGA, then stops and waits for
an indication that the FPGA has finished processing before continuing to
run. Each time the FPGA runs, it executes the logic generated for one DUT
subsystem sample time.

Coprocessing – Nonblocking With Delay Mode
In delayed nonblocking coprocessor mode, the coder automatically generates
synchronization logic for the FPGA so that the processor and FPGA run in
tandem. This mode is available only for the xPC Target FPGA I/O workflow.

Select Coprocessing – nonblocking with delay as the Processor/FPGA
synchronization mode when the FPGA processing time is long relative to
the processor sample time, or you do not want the processor to wait for the
FPGA to finish before the processor continues to run.
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The following diagram shows how the processor and FPGA run in delayed
nonblocking coprocessor mode.

The shaded areas indicate when the processor and FPGA are running. During
each sample time, the processor reads FPGA data from the previous sample
time, then writes to the FPGA and continues to run without waiting for the
FPGA to finish. Each time the FPGA runs, it executes the logic generated
for one DUT subsystem sample time.
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Hardware and Software Codesign Workflow
The hardware and software codesign workflow helps automate the deployment
of your MATLAB and Simulink design to a Zynq-7000 All Programmable
SoC. You can explore the best ways to partition and deploy your design by
iterating through the following workflow.
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1 MATLAB and Simulink Algorithm and System Design: You begin by
implementing your design in MATLAB or Simulink. When the design
behavior meets your requirements, decide how to partition your design:
which parts you want to run in hardware, and which parts you want to
run in embedded software.
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2 HDL IP Core Generation: Enclose the hardware part of your design in an
atomic Subsystem block, and use the HDL Workflow Advisor to define and
generate an HDL IP core. For more information, see “Custom IP Core
Generation” on page 22-65.

The following diagram shows a model that has been partitioned into
a hardware part, in orange, and software part, in blue. HDL IP core
generation creates an IP core from the hardware part of the model.
The IP core hardware interface includes components such as AXI4-Lite
interface-accessible registers, AXI4-Lite interfaces, AXI4-Stream Video
interfaces, and external ports.
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3 Embedded System Tool Integration: As part of the HDL Workflow Advisor
IP core generation workflow, you insert your generated IP core into a
reference design, and generate an FPGA bitstream for the Zynq hardware.

The reference design is a predefined EDK project. It contains all the
elements the Xilinx software needs to deploy your design to the Zynq
platform, except for the custom IP core and embedded software that you
generate.

The following diagram shows the relationship between the reference
design, in green, and the generated IP core, in orange.
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4 SW Interface Model Generation (requires a Simulink license): In the HDL
Workflow Advisor, after you generate the IP core and insert it into the
reference design, you can optionally generate a software interface model.
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The software interface model is your original model with AXI driver blocks
replacing the hardware part. If you have an Embedded Coder license, you
can automatically generate embedded code from the software interface
model, build it, and run the executable on the Linux kernel on the ARM
processor. The generated embedded software includes AXI driver code,
generated from the AXI driver blocks, that controls the HDL IP core.

If you do not have an Embedded Coder license or Simulink license, you can
write the embedded software and manually build it for the ARM processor.

The following diagram shows the difference between the original model
and the software interface model.
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5 Zynq Platform and External Mode PIL: Using the HDL Workflow Advisor,
you program your FPGA bitstream to the Zynq platform. You can then run
the software interface model in external mode, or processor-in-the-loop
(PIL) mode, to test your deployed design.
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If your deployed design does not meet your design requirements,
you can repeat the workflow with a modified model, or a different
hardware-software partition.
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Install Support for Altera FPGA Boards
You can use the HDL Coder FPGA Turnkey workflow with Altera FPGA
Boards by installing the related support package.

To install the HDL Coder Support Package for Altera FPGA Boards
from the HDL Workflow Advisor:

1 In the Set Target > Set Target Device and Synthesis Tool task, for
Target workflow, select FPGA Turnkey.

2 For Target platform, select Get more boards to open the Support
Package Installer.

3 In the Support Package Installer, select Altera FPGA Boards and follow
the instructions provided by Support Package Installer to complete the
installation.
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Install Support for Xilinx FPGA Boards
You can use the HDL Coder FPGA Turnkey workflow with Xilinx FPGA
Boards by installing the related support package.

To install the HDL Coder Support Package for Xilinx FPGA Boards
from the HDL Workflow Advisor:

1 In the Set Target > Set Target Device and Synthesis Tool task, for
Target workflow, select FPGA Turnkey.

2 For Target platform, select Get more boards to open the Support
Package Installer.

3 In the Support Package Installer, select Xilinx FPGA Boards and follow
the instructions provided by Support Package Installer to complete the
installation.
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Install Support for Xilinx Zynq-7000 Platform
You can use the HDL Coder IP core generation workflow with the Xilinx
Zynq-7000 Platform by installing the related support package.

To install the HDL Coder Support Package for Xilinx Zynq-7000
Platform from the HDL Workflow Advisor:

1 In the Set Target > Set Target Device and Synthesis Tool task, for
Target workflow, select IP Core Generation.

2 For Target platform, select Get more to open the Support Package
Installer.

3 In the Support Package Installer, select Xilinx Zynq-7000 and follow
the instructions provided by Support Package Installer to complete the
installation.
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Generate Test Bench With File I/O

In this section...

“When to Use File I/O In Test Bench” on page 23-2

“How Test Bench Generation with File I/O Works” on page 23-2

“Test Bench Data Files” on page 23-3

“How to Generate Test Bench with File I/O” on page 23-3

“Limitations When Using File I/O In Test Bench” on page 23-4

When to Use File I/O In Test Bench
By default, the coder generates an HDL testbench that contains the
simulation data as constants. If you have a long running simulation, the
generated HDL test bench contains a large amount of data, and therefore
requires more memory to run in an HDL simulator.

Generate your test bench with file I/O when your MATLAB or Simulink
simulation is long, or you experience memory constraints while running your
HDL simulation.

How Test Bench Generation with File I/O Works
By default, when you generate an HDL test bench, the coder writes the
stimulus and reference data from your simulation as constants in the test
bench code.

When you enable the Use file I/O to read/write test bench data option in
the HDL Workflow Advisor and generate a test bench, the coder saves the
DUT input and output data from your MATLAB or Simulink simulation to
data files (.dat).

During HDL simulation, the HDL test bench reads the saved stimulus from
the .dat files and compares the actual DUT output with the expected output,
which is also saved in .dat files. This saves memory compared to the default
option.
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Note that reference data is delayed by 1 clock cycle in the waveform viewer
compared to default test bench generation. This is due to the delay in reading
data from files.

Test Bench Data Files
Stimulus and reference data for each DUT input and output is saved in a
separate test bench data file (.dat), with the following exceptions:

• 2 files are generated for the real and imaginary parts of complex data.

• Constant DUT input data is written to the test bench as constants, the
same as for the default option.

Vector input or output data is saved as a single file.

How to Generate Test Bench with File I/O

Using the HDL Workflow Advisor
To generate a test bench that uses file I/O from the HDL Workflow Advisor:

1 In the HDL Code Generation > Set Code Generation Options > Set
Testbench Options task, enable Use file I/O to read/write test bench
data and click Apply.

2 In the HDL Code Generation > Generate RTL Code and Testbench
task, enable Generate RTL testbench and click Apply.

After you generate code, the message window shows links to the test bench
data files (.dat).

Using the Command Line
To generate a test bench that uses file I/O, use the UseFileIOInTestBench
parameter with makehdltb.

For example, to generate a Verilog test bench using file I/O for a DUT
subsystem, sfir_fixed/symmetric_fir, enter:

makehdltb('sfir_fixed/symmetric_fir','TargetLanguage','Verilog','UseFileIOI
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### Begin TestBench generation.
### Generating HDL TestBench for 'sfir_fixed/symmetric_fir'.
### Begin simulation of the model 'gm_sfir_fixed'...
### Collecting data...
### Generating test bench: hdlsrc\sfir_fixed\symmetric_fir_tb.v
### Creating stimulus vectors...
### Generating test bench data file: hdlsrc\sfir_fixed\x_in.dat
### Generating test bench data file: hdlsrc\sfir_fixed\y_out.dat
### Generating test bench data file: hdlsrc\sfir_fixed\delayed_x_out.dat
### HDL TestBench generation complete.

Limitations When Using File I/O In Test Bench
To use file I/O in your test bench, the following limitations apply:

• Double and single data types at DUT inputs and outputs are not supported.

• If your target language is VHDL, the Scalarize vector ports option must
be off.
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• “Create Xilinx KC705 Evaluation Board Definition File” on page 24-8
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FPGA Board Customization

In this section...

“Feature Description” on page 24-2

“Custom Board Management” on page 24-2

“FPGA Board Requirements” on page 24-3

Feature Description
Both HDL Coder and HDL Verifier software include a set of predefined FPGA
boards you can use with the Turnkey or FPGA-in-the-Loop (FIL) workflows
(you can view the lists of these supported boards in the HDL Workflow
Advisor or in the FIL Wizard). With the FPGA Board Manager, you can add
additional boards to use either of these workflows. All you need to add a board
is the relevant information from the board specification documentation.

The FPGA Board Manager is the hub for accessing wizards and dialog
boxes that take you through the steps necessary to create a custom board
configuration. You can also access options to import a custom board, remove a
board, make a copy of a board for further modification, and verify a new board.

Custom Board Management
You manage FPGA custom boards through the following user interfaces:

• “FPGA Board Manager” on page 24-22: portal to adding, importing,
deleting, and otherwise managing board definition files.

• “New FPGA Board Wizard” on page 24-26: This wizard guides you through
creating a custom board definition file with information you obtain from
the board specification documentation.

• “FPGA Board Editor” on page 24-37: user interface for viewing or editing
board information.

To begin, review the “FPGA Board Requirements” on page 24-3 and then
follow the steps described in “Create Custom FPGA Board Definition” on
page 24-7.
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FPGA Board Requirements

• “FPGA Device” on page 24-3

• “FPGA Design Software” on page 24-3

• “General Hardware Requirements” on page 24-3

• “Hardware Requirements for FPGA-in-the-Loop” on page 24-4

FPGA Device
Select one of the following links to view a current list of supported FPGA
device families:

• For use with FPGA-in-the-Loop (FIL), see “Supported FPGA Device
Families for Board Customization” in the HDL Verifier documentation.

• For use with with FPGA Turnkey, see “Supported FPGA Device Families
for Board Customization” in the HDL Coder documentation.

FPGA Design Software
Altera Quartus II or Xilinx ISE is required. See product documentation for
HDL Coder or HDL Verifier for the specific software versions required.

The following MathWorks® tools are required to use FIL or FPGA Turnkey.

Workflow Required Tools

FPGA-in-the-Loop • HDL Verifier

• Fixed-Point Designer

FPGA Turnkey • HDL Coder

• Simulink

• Fixed-Point Designer

General Hardware Requirements
To use a FPGA development board, make sure that you have the following
FPGA resources:
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• Clock: An external clock connected to the FPGA is required. The clock can
be differential or single-ended. The accepted clock frequency is from 5 MHz
to 300 MHz. When used with FIL, there are additional requirements to the
clock frequency (see “Hardware Requirements for FPGA-in-the-Loop” on
page 24-4).

• Reset: An external reset signal connected to the FPGA is optional. When
supplied, this signal functions as the global reset to the FPGA design.

• JTAG download cable: A JTAG download cable that connects host PC
and FPGA board is required for the FPGA programming. The FPGA must
be programmable using Xilinx iMPACT or Altera Quartus Programmer.

Hardware Requirements for FPGA-in-the-Loop
An Ethernet connection between the FPGA board and its host PC is required
for FIL. On the FPGA board, the Ethernet MAC is implemented in FPGA.
An Ethernet PHY chip is required to be on the FPGA board to connect the
physical medium to the Media ACcess (MAC) layer in the FPGA.

Note When programming the FPGA, HDL Verifier assumes that there is
only one download cable connected to the Host PC and it can be automatically
recognized by the FPGA programming software. If this is not the case, use
FPGA programming software to program your FPGA with the correct options.

Supported Ethernet PHY Device. The FIL feature is tested with the
following Ethernet PHY chips and may not work with other Ethernet PHY
devices.

Ethernet PHY Chip Test

Marvell® Alaska 88E1111 For GMII, RGMII, and 100 Base-T
MII interfaces

National Semiconductor DP83848C For 100 Base-T MII interface only

Ethernet PHY Interface. The Ethernet PHY chip must be connected to the
FPGA using one of the following interfaces:
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Interface Note

Gigabit Media Independent Interface
(GMII)

Only 1000 Mbits/s speed is
supported using this interface.

Reduced Gigabit Media Independent
Interface (RGMII)

Only 1000 Mbits/s speed is
supported using this interface.

Media Independent Interface (MII) Only 100Mbits/s speed is supported
using this interface.

Note For GMII, the TXCLK (clock signal for 10/100 Mbits signal) signal is
not required because only 1000 Mbits/s speed is supported.

In addition to the standard GMII/RGMII/MII interface signals,
FPGA-in-the-Loop also requires an Ethernet PHY chip reset signal
(ETH_RESET_n). This active-low reset signal performs the PHY hardware
reset by FPGA. It is active-low.

Special Clock Frequency Requirement for GMII/RGMII Interface.
When GMII/RGMII interfaces are used, an exact 125MHz clock is required by
FPGA to drive the 1000 Mbits/s communication. This clock is derived from
the user supplied external clock using the clock module or PLL.

Not all external clock frequencies can derive an exact 125 MHz clock
frequency. The acceptable clock frequencies vary depending on the FPGA
device family. The recommended clock frequencies are 50, 100, 125, and 200
MHz.

Special Timing considerations for RGMII. When the RGMII interface is
used, the MAC on the FPGA assumes that the data are aligned with the
edges of reference clock as specified in the original RGMII v1.3 standard. In
this case, PC board designs provide additional trace delay for clock signals
(RGMII v1.3).

The RGMII v2.0 standard allows the transmitter to integrate this delay so
that PC board delay is not required. Marvell Alaska 88E1111 has internal
registers to add internal delays to RX and TX clocks. The internal delays are
not added by default. This means you use the MDIO module to configure
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Marvell 88E1111 to add internal delays. (See “FIL I/O” on page 24-31 for the
usage of the MDIO module.)
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Create Custom FPGA Board Definition
1 Be ready with the following:

a Board specification document. Any format you are comfortable with is
fine, but if you have it in an electronic version, you can search for the
information as it is required.

b If you plan to validate (test) your board definition file, set up FPGA
design software tools:

For validation, you must have Xilinx or Altera on your path. Use the
function hdlsetuptoolpath to configure the tool for use with MATLAB.
For example:

>> hdlsetuptoolpath('ToolName', 'Xilinx ISE', 'ToolPath', 'C:\Xilinx\13.4\ISE_DS\ISE\bin\nt64\ise.exe'

2 Open the FPGA Board Manager by typing fpgaBoardManager in the
MATLAB command window. Alternatively, if you are using the HDL
Workflow Advisor, you can click Launch Board Manager at Step 1.1.

3 Open the New FPGA Board Wizard by clicking Create New Board. For a
description of all the tasks you can perform with the FPGA Board Manager,
see “FPGA Board Manager” on page 24-22.

4 The wizard guides you through entering all board information. At
each page, fill in the required fields. For assistance in entering board
information, see “New FPGA Board Wizard” on page 24-26.

5 Save the board definition file. This is the last step and is automatically
instigated when you click Finish in the New FPGA Board Wizard. See
“Save Board Definition File” on page 24-17.

Your custom board definition now appears in the list of available FPGA
Boards in the FPGA Board Manager. If you are using HDL Workfow Advisor,
it also shows in the Target platform list.

Follow the example “Create Xilinx KC705 Evaluation Board Definition File”
on page 24-8 for a demonstration of adding a custom FPGA board with the
New FPGA Board Manager.
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Create Xilinx KC705 Evaluation Board Definition File

In this section...

“Overview” on page 24-8

“What You Need to Know Before Starting” on page 24-8

“Start New FPGA Board Wizard” on page 24-9

“Provide Basic Board Information” on page 24-10

“Specify FPGA Interface Information” on page 24-12

“Enter FPGA Pin Numbers” on page 24-13

“Run Optional Validation Tests” on page 24-15

“Save Board Definition File” on page 24-17

“Use New FPGA Board” on page 24-18

Overview
For FPGA-in-the-Loop, you can use your own qualified FPGA board even if
is not in the pre-registered FPGA board list supplied by MathWorks. Using
the New FPGA Board Wizard, you can create a board definition file that
describes your custom FPGA board.

In this example, you can follow the workflow of creating a board definition file
for the Xilinx KC705 evaluation board to use with FIL simulation.

What You Need to Know Before Starting

• You need to know the following types of information about the board:

- FPGA interface to the Ethernet PHY chip

- Clock pins names and numbers

- Reset pins names and numbers

In this example, the above information is supplied to you in this section. In
general, you can find this type of information in the board specification file.
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This example uses the KC705 Evaluation Board for the Kintex-7 FPGA
User Guide, published by Xilinx.

• For validation, you must have Xilinx or Altera on your path. Use the
function hdlsetuptoolpath to configure the tool for use with MATLAB.
For example:

>> hdlsetuptoolpath('ToolName', 'Xilinx ISE', 'ToolPath', 'C:\Xilinx\13.4\ISE_DS\ISE\bin\nt64\ise.exe');

• If you want to verify programming the FPGA board after you add its
definition file, you will need to have the custom board attached to your
computer. However, having the board connected is not necessary for
creating the board definition file.

Start New FPGA Board Wizard

1 Start the FPGA Board Manager by entering the following command at
the MATLAB prompt:

>>fpgaBoardManager

2 Click Create New Board to open the New FPGA Board Wizard.
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Provide Basic Board Information

1 In the Basic Information pane, enter the following information:

• Board Name: Enter "My Xilinx KC705 Board"
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• Vendor: Select Xilinx

• Family: Select Kintex7

• Device: Select xc7k325t

• Package: Select ffg900

• Speed: Select -2

• JTAG Chain Position: Select 1

The wizard should now look like the following image.
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The information you just entered can be found in the KC705 Evaluation
Board for the Kintex-7 FPGA User Guide.

2 Click Next.

Specify FPGA Interface Information

1 In the Interfaces pane, perform the following tasks.

a Check the Ethernet Interface option in the FPGA-in-the-Loop
Interface section. This option is required for using your board with
FPGA-in-the-Loop.

b Select GMII in the PHY Interface Type. This option indicates that
the onboard FPGA is connected to the Ethernet PHY chip via a GMII
interface.

c Leave the User-defined I/O option in the FPGA Turnkey Interface
section unchecked. FPGA Turnkey workflow is not the focus of this
example.

d Clock Frequency: Enter 200. Note that this Xilinx KC705 board has
multiple clock sources. This 200 MHz clock is one of the recommended
clock frequencies for use with Ethernet interface (50, 100, 125, and
200 MHz).

e Clock Type: Select Differential.

f Clock_P Pin Number: Enter AD12.

g Clock_N Pin Number: Enter AD11.

h Resent Pin Number: Enter AB7. This will supply a global reset to
the FPGA.

i Active Level: Select Active-High.

You can obtain all necessary information from the board design
specification.

The wizard should now look like the following image.
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2 Click Next.

Enter FPGA Pin Numbers

1 In the FILI/O pane, enter the numbers for each FPGA pin. This information
is required.
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Note that pin numbers for RXD and TXD signals are entered from the
least significant digit (LSD) to the most significant digit (MSB), separated
by a comma.

For signal name... Enter FPGA pin number...

ETH_COL W19

ETH_CRS R30

ETH_GTXCLK K30

ETH_MDC R23

ETH_MDIO J21

ETH_RESET_n L20

ETH_RXCLK U27

ETH_RXD U30,U25,T25,U28,R19,T27,T26,T28

ETH_RXDV R28

ETH_RXER V26

ETH_TXD N27,N25,M29,L28,J26,K26,L30,J28

ETH_TXEN M27

ETH_TXER N29

2 Click Advanced Options to expand the section.

3 Check the Generate MDIO module to override PHY settings option.

This option is selected for the following reasons:

• There are jumpers on the Xilinx KC705 board that configure the
Ethernet PHY device to MII, GMII, RGMII, or SGMII mode. Since this
example uses the GMII interfaces, the FPGA board will not work if the
PHY device are set to the wrong mode. When the Generate MDIO
module to override PHY settings option is selected, the FPGA uses
the Management Data Input/Output (MDIO) bus to override the jumper
settings and configure the PHY chip to the correct GMII mode.

• This option currently only applies to Marvell Alaska PHY device
88E1111 and this KC705 board is using the Marvel device.
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4 PHY address (0 – 31): Enter 7.

The wizard should now look like the following image.

5 Click Next.

Run Optional Validation Tests
This step provides a validation test for you to verify if the entered information
is correct by performing FPGA-in-the-Loop cosimulation. You will need Xilinx
ISE 13.4 or higher versions installed on the same computer. This step is
optional and you may skip it if you prefer.
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Note For validation, you must have Xilinx or Altera on your path. Use the
function hdlsetuptoolpath to configure the tool for use with MATLAB. For
example:

>> hdlsetuptoolpath('ToolName', 'Xilinx ISE', 'ToolPath', 'C:\Xilinx\13.4\ISE_DS\ISE\bin\nt64\ise.exe');

To run this test, perform the following actions.

1 Check the Run FPGA-in-the-Loop test option.

2 If you have the board attached, check the Include FPGA board in the
test option. You will need to supply the IP address of the FPGA Board.
This example assumes the Xilinx KC705 board is attached to your host
computer and it has an IP address of 192.168.0.2.

3 Click Run Selected Test(s). The tests will take about 10 minutes to
complete.
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Save Board Definition File

1 Click Finish to exit the New FPGA Board Wizard. A Save As dialog pops
up and asks for the location of the FPGA board definition file. For this
example, save as C:\boardfiles\KC705.xml.
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2 Click Save to save the file and exit.

Use New FPGA Board

1 After you save the board definition file, you are returned to the FPGA
Board Manager. In the FPGA Board List you can now see the new board
you just defined.
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Click OK to close the FPGA Board Manager.

2 You can view the new board in the board list from either the FIL Wizard or
the HDL Workflow Advisor.

a Start the FIL Wizard from the MATLAB prompt.

>>filWizard

The Xilinx KC705 board appears in the board list and you can select it
for FPGA-in-the-Loop simulation.
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b Start HDL Workflow Advisor.

In step 1.1, select FPGA-in-the-Loop and click Launch Board
Manager.

The Xilinx KC705 board appears in the board list and you can select it
for FPGA-in-the-Loop simulation.
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This concludes the example of adding a custom board definition file.
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FPGA Board Manager

In this section...

“Introduction” on page 24-22

“Filter” on page 24-24

“Search” on page 24-24

“FIL Enabled/Turnkey Enabled” on page 24-24

“Create Custom Board” on page 24-24

“Add Board From File” on page 24-24

“Get More Boards” on page 24-24

“View/Edit” on page 24-25

“Remove” on page 24-25

“Clone” on page 24-25

“Validate” on page 24-25

Introduction
The FPGA Board Manager is the portal to managing custom FPGA boards.
You can create a new board definition file or edit an existing one. You can
even import a custom board from an existing board definition file.

You start the FPGA Board Manager by one of the following methods:

• By typing fpgaBoardManager in the MATLAB command window

• From the FIL Wizard by clicking Launch Board Manager on the first
page

• From the HDL Workflow Advisor (when using HDL Coder) at Step 1.1
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Filter
Choose one of the following views:

• All boards

• Only those that were preinstalled with HDL Verifier or HDL Coder

• Only custom boards

Search
Find a specific board in the list or those boards that fully or partially match
your search string.

FIL Enabled/Turnkey Enabled
These columns indicate whether the specified board is supported for FIL or
Turnkey operations.

Create Custom Board
Start New FPGA Board Wizard. See “New FPGA Board Wizard” on page
24-26. You can find he process for creating a new board definition file in
“Create Custom FPGA Board Definition” on page 24-7.

Add Board From File
Import a board definition file (.xml).

Get More Boards
Download FPGA board support packages for use with FIL

1 Click Get more boards.

2 Follow the prompts in the Support Package Installer to download an FPGA
board support package.

3 When the download is complete, you can see the new boards in the board
list in the FPGA Board Manager.
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View/Edit
View board configurations and modify the information. You may view a
read-only file but not edit it. See “FPGA Board Editor” on page 24-37.

Remove
Remove custom board from the list. This action does not delete the board
definition XML file.

Clone
Makes a copy of an existing custom board for further modification.

Validate
Runs the validation tests for FIL See “Run Optional Validation Tests” on
page 24-15.
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New FPGA Board Wizard
Using the New FPGA Board Wizard, you can enter all the required
information needed to add a board to the FPGA board list. This list applies to
both FIL and Turnkey workflows. Review “FPGA Board Requirements” on
page 24-3 before adding a new FPGA board to make sure it is compatible with
the workflow for which you want to use it.

Several buttons in the New FPGA Board Wizard assist in navigation:

• Back: Go to a previous page to review or edit data already entered.

• Next: Go to next page when all requirements of current page have been
satisfied.

• Help: Open Doc Center, and display this topic.

• Cancel: Exit New FPGA Board Wizard. You have the option to exit with
or without saving the information from your session.

Adding Boards Once for Multiple Users To add new boards globally,
follow these instructions. Note that to access a board added globally, all users
must be using the same MATLAB installation.

1 Create the following folder:

matlabroot/toolbox/shared/eda/board/boardfiles

2 Copy the board description XML file to the boardfiles folder.

3 After copying the XML file, restart MATLAB. The new board appears in
the FPGA board list for either or both the FIL and Turnkey workflows.

All boards under this directory will show-up in the FPGA board list
automatically for users with the same MATLAB installation. You do not need
to use FPGA Board Manager to add these boards again.

The workflow for adding a new FPGA board contains these steps:
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In this section...

“Basic Information” on page 24-28

“Interfaces” on page 24-29

“FIL I/O” on page 24-31

“Turnkey I/O” on page 24-33

“Validation” on page 24-36

“Finish” on page 24-36
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Basic Information

Board Name: Enter a unique board name.

Device Information:

• Vendor: Xilinx or Altera

• Family: Family depends on the specified vendor. See the board
specification file for applicable settings.

• Device: Use the board specification file to select the correct device.

• For Xilinx boards only:
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- Package: Use the board specification file to select the correct package.

- Speed: Use the board specification file to select the correct speed.

- JTAG Chain Position: Value indicates the starting position for JTAG
chain. Consult the board specification file for this information.

Interfaces

• FIL Interface: If you want to use this board with FIL, check Ethernet
Interface. Specify the PHY Interface type (found in the board
specification file).
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Note Not all interfaces are available for all boards. Availability depends
on the board you selected in Basic Information.

• FPGA Turnkey Interface: If you want to use with board with the HDL
Coder FPGA Turnkey workflow, select User-defined I/O.

• FPGA Input Clock. Clock details are required for both workflows. You
can find all necessary information in the board specification file.

- Clock Frequency. Must be between 5 and 300. For an Ethernet
interface, the suggested clock frequencies are 50, 100, 125, and 200 MHz.

- Clock Pin Number . Must be specified. Example: N10.

- Clock Type : Single_Ended or Differential.

• Reset (Optional). If you want to indicate a reset, find the pin number and
active level in the board specification file, and enter that information.

- Reset Pin Number. Leave empty if you do not have one.

- Active Level : Active-Low or Active-High.
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FIL I/O

Signal List: You must provide all the FPGA pin numbers for the specified
signals. You can find this information in the board specification file. For
vector signals, list all pin numbers on the same line, separated by commas.

Generate MDIO module to override PHY settings: See the next section
on FPGA Board Management Data Input/Output Bus (MDIO) to determine
when to use this feature. If you do select this option, enter the PHY address.

What is the Management Data Input/Output Bus (MDIO)?

Management Data Input/Output (MDIO) is a serial bus, defined in the IEEE
802.3 standard, that connects MAC devices and Ethernet PHY devices. The
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FPGA MAC uses the MDIO bus to set control registers in the Ethernet PHY
device on the board.

Currently only the Marvell 88E1111 PHY chip is supported by this MDIO
module implementation. Do not select this checkbox if you are not using
Marvell 88E1111.

The generated MDIO module is used to perform the following operations:

• GMII mode: The PHY device can start up using other modes, such as
RGMII/SGMII. The generated MDIO module sets the PHY chip in GMII
mode.

• RGMII mode: The PHY device can start up using other modes, such as
GMII/SGMII. The generated MDIO module sets the PHY device in RGMII
mode. In addition, the module sets the PHY chip to add internal delay
for RX and TX clocks.

• MII mode: The generated MDIO module sets the PHY device in GMII
compatible mode. The module also sets the autonegotiation register to
remove the 1000 Base-T capability advertisement. This reset ensures that
the autonegotiation process does not select 1000 Mbits/s speed, which is
not supported in MII mode.

When To Select MDIO: Select the Generate MDIO module to override
PHY settings option when both the following conditions are met:

• The onboard Ethernet PHY device is Marvell 88E1111.

• The PHY device startup settings are not compatible with the FPGA MAC.
The MDIO modules for different PHY modes must override these settings,
as previously described.

Specifying the PHY Address: The PHY address is a 5-bit integer. The
value is determined by the CONFIG[0] and CONFIG[1] pin on Marvell
88E1111 PHY device. See the board manual for this value.
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Turnkey I/O

You must define at least one output port for the Turnkey I/O interface.

Signal List: You must provide all the FPGA pin numbers for the specified
signals. You can find this information in the board specification file. For
vector signals, list all pin numbers on the same line, separated by commas.
The number of pin numbers must match the bit width of the corresponding
signal.

Add New: You are prompted to enter all entries in the signal list manually.
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Add Using Template: The wizard prepopulates a new signal entry for
UART, LED, GPIO, or DIP Switch signals with the following:

• A generic signal name

• Description

• Direction

• Bit width

You may change the values in any of these prepopulated fields.

Delete: Delete the selected signal from list.

The following example demonstrates using the Add Using Template feature.

1 In the Turnkey I/O dialog, click Add Using Template.

2 You can now view the template dialog.

3 Pull down the I/O list and select from the following options:

4 Click OK.

5 The wizard adds the specified signal (or signals) to the I/O list.
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Validation

Run the validation test. For FPGA Turnkey testing, you must have a board
attached. For FIL testing, the board is optional.

Finish
When you have completed validation, click Finish. See “Save Board
Definition File” on page 24-17.
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FPGA Board Editor
To edit a board definition XML file, you must first make it writeable. If
the file is read-only, the FPGA Board Editor only lets you view the board
configuration information. You cannot modify that information.

In this section...

“General” on page 24-37

“Interface” on page 24-39

General
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Board Name: Unique board name

Device Information:

• Vendor: Xilinx or Altera

• Family: Family depends on the specified vendor. See the board
specification file for applicable settings.

• Device: Device depends on the specified vendor and family. See the board
specification file for applicable settings.

• For Xilinx boards only:

- Package: Package depends on specified vendor, family, and device. See
the board specification file for applicable settings.

- Speed: Speed depends on package. See the board specification file for
applicable settings.

- JTAG Chain Position: Value indicates the starting position for JTAG
chain. Consult the board specification file for this information.

• FPGA Input Clock. Clock details are required for both the FIL and
Turnkey workflows. You can find all necessary information in the board
specification file.

- Clock Frequency. Must be between 5 and 300. For an Ethernet
interface, the suggested clock frequencies are 50, 100, 125, and 200 MHz.

- Clock Pin Number . Must be specified. Example: N10.

- Clock Type : Single_Ended or Differential.

• Reset (Optional). If you want to indicate a reset, find the pin number and
active level in the board specification file, and enter that information.

- Reset Pin Number. Leave empty if you do not have one.

- Active Level : Active-Low or Active-High.

24-38



FPGA Board Editor

Interface

The Interface page describes the supported FPGA I/O Interfaces. Select any
listed interface and click View to see the Signal List. If the board definition
file has write permission, you can also Add New interface or Remove an
interface.
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HDL Workflow Advisor Tasks

In this section...

“HDL Workflow Advisor Tasks Overview” on page 25-3

“Set Target Overview” on page 25-6

“Set Target Device and Synthesis Tool” on page 25-7

“Set Target Library” on page 25-9

“Set Target Interface” on page 25-10

“Set Target Frequency” on page 25-11

“Set Target Interface” on page 25-12

“Prepare Model For HDL Code Generation Overview” on page 25-13

“Check Global Settings” on page 25-14

“Check Algebraic Loops” on page 25-15

“Check Block Compatibility” on page 25-16

“Check Sample Times” on page 25-17

“Check FPGA-in-the-Loop Compatibility” on page 25-18

“HDL Code Generation Overview” on page 25-19

“Set Code Generation Options Overview” on page 25-20

“Set Basic Options” on page 25-21

“Set Advanced Options” on page 25-22

“Set Testbench Options” on page 25-23

“Generate RTL Code and Testbench” on page 25-24

“Generate RTL Code and IP Core” on page 25-26

“FPGA Synthesis and Analysis Overview” on page 25-27

“Create Project” on page 25-28

“Perform Synthesis and P/R Overview” on page 25-29

“Perform Logic Synthesis” on page 25-30

“Perform Mapping” on page 25-31
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In this section...

“Perform Place and Route” on page 25-32

“Annotate Model with Synthesis Result” on page 25-33

“Download to Target Overview” on page 25-35

“Generate Programming File” on page 25-36

“Program Target Device” on page 25-37

“Generate xPC Target Interface” on page 25-38

“Save and Restore HDL Workflow Advisor State” on page 25-39

“FPGA-in-the-Loop Implementation” on page 25-39

“Set FIL Options” on page 25-39

“Build FPGA-in-the-Loop” on page 25-39

“Check USRP® Compatibility” on page 25-40

“Verify with HDL Cosimulation” on page 25-40

“Generate FPGA Implementation” on page 25-40

“Check SDR Compatibility” on page 25-40

“SDR FPGA Implementation” on page 25-41

“Set SDR Options” on page 25-41

“Build SDR” on page 25-43

“Embedded System Integration” on page 25-44

“Create Project” on page 25-44

“Generate Software Interface Model” on page 25-44

“Build FPGA Bitstream” on page 25-45

“Program Target Device” on page 25-45

HDL Workflow Advisor Tasks Overview
The HDL Workflow Advisor is a tool that supports a suite of tasks covering
the stages of the FPGA design process. Some tasks perform model validation
or checking; others run the HDL code generator or third-party tools. Each
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folder at the top level of the HDL Workflow Advisor contains a group of
related tasks that you can select and run:

• Set Target: The tasks in this category enable you to select the desired
target device and map its I/O interface to the inputs and outputs of your
model.

Prepare Model For HDL Code Generation: The tasks in this category
check your model for HDL code generation compatibility. The tasks also
report on model settings, blocks, or other conditions (such as algebraic
loops) that would impede code generation, and provide advice on how to fix
such problems.

• HDL Code Generation: This category supports all HDL-related options
of the Configuration Parameters dialog, including setting HDL code and
test bench generation parameters, and generating code, test bench, or a
cosimulation model.

• FPGA Synthesis and Analysis: The tasks in this category support:

- Synthesis and timing analysis through integration with third-party
synthesis tools

- Back annotation of the model with critical path and other information
obtained during synthesis

• FPGA-in-the-Loop Implementation: This category implements the
phases of FIL, including providing block generation, synthesis, logical
mapping, PAR (place-and-route), programming file generation, and a
communications channel. These capabilities are specifically designed for a
particular board and tailored to your RTL code. An HDL Verifier license
is required for FIL.

• Download to Target: The tasks in this category depend on the selected
target device and might include:

- Generation of a target-specific FPGA programming file

- Programming the target device

- Generation of a model that contains an xPC Target interface subsystem
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See Also
For summary information on each HDL Workflow Advisor folder or task,
select the folder or task icon and then click the HDL Workflow Advisor Help
button.
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Set Target Overview
The tasks in the Set Target folder enable you to select a target FPGA device
and define the I/O interface to be generated for the device. The Set Target
folder contains the following tasks:

• Set Target Device and Synthesis Tool: Select a target FPGA device
and synthesis tools.

• Set Target Interface: Use the Target Platform Interface Table to assign
each port on your DUT to an I/O resource on the target device.

See Also
For summary information on each Set Target task, select the task icon and
then click the HDL Workflow Advisor Help button.
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Set Target Device and Synthesis Tool
Set Target Device and Synthesis Tool enables you to select an FPGA
target device and an associated synthesis tool from a pulldown menu that lists
the devices that HDL Workflow Advisor currently supports.

Description
This task displays the following options:

• Target Workflow: A pulldown menu that lists the possible workflows that
HDL Workflow Advisor supports. Choose from:

- Generic ASIC/FPGA

- FPGA-in-the-Loop

- FPGA Turnkey

- xPC Target FPGA I/O

- IP Core Generation

- Customization for an SDR Platform

• Target platform: A pulldown menu that lists the devices the HDL
Workflow Advisor currently supports. Not available for the Generic
ASIC/FPGA workflow.

• Synthesis tool: Select a synthesis tool, then select the Family, Device,
Package, and Speed for your synthesis target. Select a Xilinx or Altera
tool to make the Set Target Library (for floating-point synthesis
support) option available.

• Project folder: Specify the project folder name.

• Set Target Library (for floating-point synthesis support): Select to
map to an FPGA target-specific floating-point library. Enabling this option
causes the Set Target Library task to appear on the left.

Dependencies
Setting Target workflow to FPGA Turnkey or xPC Target FPGA I/O
enables the following tasks:

• “Set Target Interface” on page 25-10
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• “Set Target Frequency” on page 25-11

• Tasks in the Download to Target folder

Setting Target workflow to IP Core Generation enables the “Set Target
Interface” on page 25-12 task.

Selecting Set Target Library (for floating-point synthesis support)
causes the Set Target Library task to appear on the left.

See Also
For information on the Set Target Library task, see “Set Target Library”
on page 25-9.
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Set Target Library
Target library: The selected FPGA floating-point target library.

Objective: Choose to optimize your generated HDL code for Speed or Area.

Block latencies: Select the block latencies to use.

Set Xilinx simulation path: Select to enter the location of your pre-compiled
Xilinx simulation library (xilinxcorelib). Do not select this option if you
wish the coder to automatically detect the location of the simulation library.
This option is available only if you selected a Xilinx synthesis tool in the
Set Target Device and Synthesis Tool task. If the pre-compiled Xilinx
simulation library is unavailable, the coder issues a warning.

Absolute path: Enter the location of the simulation library. This option is
available if Set Xilinx simulation path is selected.

Dependencies
This task appears when you select Set Target Library (for floating-point
synthesis support) in the Set Target Device and Synthesis Tool task.

The Set Xilinx simulation path option is available when you select a Xilinx
device in the Set Target Device and Synthesis Tool task.

See Also
For more information on targeting FPGA floating-point library blocks, see
“Map to an FPGA Floating-Point Library” on page 22-22.
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Set Target Interface
Set Target Interface displays properties of input and output ports on your
model, and enables you to map these ports to I/O resources on the target
device.

Description
Set Target Interface displays the Target Platform Interface Table, which
shows:

• The name, port type (input or output), and data type for each port on
your model

• A pulldown menu listing the available I/O resources for the target device

These resources are device-specific. For detailed information on each
resource, see the documentation for your FPGA development board.

Dependency
This task appears when you set Target workflow to FPGA Turnkey or xPC
Target FPGA I/O.

25-10



HDL Workflow Advisor Tasks

Set Target Frequency
Automatically generate clock module for FPGA Turnkey or xPC Target FPGA
I/O targets.

Leave entry unchanged if you wish to use the default value (same as input).

Dependency
This task appears when you set Target workflow to FPGA Turnkey or xPC
Target FPGA I/O.
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Set Target Interface
Select a processor-FPGA synchronization mode, and map your model’s input
and output ports to I/O resources on the target device.

Description
For Processor/FPGA synchronization, select:

• Free running if you do not want your processor and FPGA to be
automatically synchronized.

• Coprocessing – blocking if you want the coder to automatically generate
synchronization logic for the FPGA so that the processor and FPGA run in
tandem. Select this mode when FPGA execution time is short relative to
the processor sample time, and you want the FPGA to complete before the
processor continues.

• Coprocessing – nonblocking with delay (not supported for IP Core
Generation workflow) if you want the coder to automatically generate
synchronization logic for the FPGA so that the processor and FPGA run in
tandem. Select this mode when the FPGA processing time is long relative
to the processor sample time, or you do not want the processor to wait for
the FPGA to finish before the processor continues.

The Target Platform Interface Table shows:

• The name, port type (input or output), and data type for each port on
your model.

• A pulldown menu listing the available I/O resources for the target device.

These resources are device-specific. For detailed information on each
resource, see the documentation for your FPGA development board.

Dependency
This task appears when you set Target workflow to IP Core Generation,
FPGA Turnkey, or xPC Target FPGA I/O.

See Also
• “Processor and FPGA Synchronization” on page 22-80
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• “Custom IP Core Generation” on page 22-65

• “Generate xPC Target Interface for Speedgoat Boards” on page 22-42

Prepare Model For HDL Code Generation Overview
The tasks in the Prepare Model For HDL Code Generation folder check
the model for compatibility with HDL code generation. If a check encounters
a condition that would raise a code generation warning or error, the right
pane of the HDL Workflow Advisor displays information about the condition
and how to fix it. The Prepare Model For HDL Code Generation folder
contains the following checks:

• Check Global Settings: Check model parameters for compatibility with
HDL code generation.

• Check Algebraic Loops: Check the model for algebraic loops.

• Check Block Compatibility: Check that blocks in the model support
HDL code generation.

• Check Sample Times: Check the solver options, tasking mode, and rate
transition diagnostic settings, given the model’s sample times.

• Check FPGA-in-the-Loop Compatibility: Check model compatibility
with FPGA-in-the-Loop, specifically:

- Not allowed: sink/source subsystems, single/double data types, zero
sample time

- Must be present: HDL Verifier license

This option is available only if you select FPGA-in-the-Loop for Target
workflow.

• Check USRP Compatibility: The model must have 2 input ports and 2
output ports of signed 16-bit signals.

This option is available only if you select Customization for the
USRP(TM) Device for Target workflow.

See Also
For summary information on each Prepare Model For HDL Code
Generation task, select the task icon and then click the HDL Workflow
Advisor Help button.

25-13



25 HDL Workflow Advisor Tasks

Check Global Settings
Check Global Settings checks model-wide parameter settings for HDL
code generation compatibility.

Description
This check examines the model parameters for compatibility with HDL code
generation and flags conditions that would raise an error or a warning
during code generation. The HDL Workflow Advisor displays a table with the
following information about each condition detected:

• Block: Hyperlink to the model configuration dialog page that contains the
error or warning condition

• Settings: Name of the model parameter that caused the error or warning
condition

• Current: Current value of the setting

• Recommended: Recommended value of the setting

• Severity: Severity level of the warning or error condition. Minimally, you
should fix settings that are tagged as error.

Tip
To set reported settings to their recommended values, click the Modify All
button. You can then run the check again and proceed to the next check.
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Check Algebraic Loops
Detect algebraic loops in the model.

Description
The coder does not support HDL code generation for models in which algebraic
loop conditions exist. Check Algebraic Loops examines the model and
fails the check if it detects an algebraic loop. You should eliminate algebraic
loops from your model before proceeding with further HDL Workflow Advisor
checks or code generation.

See Also
For information about algebraic loops, see “Algebraic Loops” in the Simulink
documentation.

25-15



25 HDL Workflow Advisor Tasks

Check Block Compatibility
Check the DUT for unsupported blocks.

Description
Check Block Compatibility checks blocks within the DUT for compatibility
with HDL code generation. The check fails if it encounters blocks that the
coder does not support. The HDL Workflow Advisor reports incompatible
blocks, including the full path to each block.

See Also
See “Blocks Supported for HDL Code Generation” on page 11-3 for a complete
list of supported blocks and their implementations.

25-16



HDL Workflow Advisor Tasks

Check Sample Times
Check the solver, sample times, and tasking mode settings for the model.

Description
Check Sample Times checks the solver options, sample times, tasking
mode, and rate transition diagnostics for HDL code generation compatibility.
Solver options that the coder requires or recommends are:

• Type: Fixed-step. (The coder currently supports variable-step solvers
under limited conditions. See hdlsetup for details.)

• Solver: Discrete (no continuous states). Other fixed-step solvers could be
selected, but this option is usually the best one for simulating discrete
systems.

• Tasking mode: SingleTasking. The coder does not currently support
models that execute in multitasking mode. Do not set Tasking mode
to Auto.

• Multitask rate transition and Single task rate transition diagnostic
options: set to Error.
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Check FPGA-in-the-Loop Compatibility
HDL Verifier checks model for compatibility with FPGA-in-the-Loop
processing.

See Also
For HDL code and model compatibilities with FPGA-in-the-Loop processing,
see “Prepare DUT For FIL Interface Generation”.
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HDL Code Generation Overview
The tasks in the HDL Code Generation folder enable you to:

• Set and validate HDL code and test bench generation parameters. Most
parameters of the HDL Code Generation pane of the Configuration
Parameters dialog box and the Model Explorer are supported.

• Generate any or all of:

- RTL code

- RTL test bench

- Cosimulation model

To run the tasks in the HDL Code Generation folder automatically, select
the folder and click Run to Failure.

Tip After each task in this folder runs, the coder updates the Configuration
Parameters dialog box and the Model Explorer.
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Set Code Generation Options Overview
The tasks in the Set Code Generation Options folder enable you to set and
validate HDL code and test bench generation parameters. Each task of the
Set Code Generation Options folder supports options of the HDL Code
Generation pane of the Configuration Parameters dialog box and the Model
Explorer. The tasks are:

• Set Basic Options: Set parameters that affect overall code generation.
See “HDL Code Generation Pane: General” on page 9-8 for information
on each parameter.

• Set Advanced Options: Set parameters that specify detailed
characteristics of the generated code, such as HDL element naming and
whether certain optimizations apply. See “HDL Code Generation Pane:
Global Settings” on page 9-22 for information on each parameter.

• Set Testbench Options: Set options that determine characteristics of
generated test bench code. See “HDL Code Generation Pane: Test Bench”
on page 9-78 for information on each parameter.

To run the tasks in the Set Code Generation Options folder automatically,
select the folder and click Run to Failure.
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Set Basic Options
Set parameters that affect overall code generation.

Description
The Set Basic Options task sets options that are fundamental to HDL code
generation. These options include selecting the DUT and selecting the target
language. The basic options are the same as those found in the top-level HDL
Code Generation pane of the Configuration Parameters dialog box, except
that the Code generation output group is omitted.

See Also
See also “HDL Code Generation Pane: General” on page 9-8.
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Set Advanced Options
Set parameters that specify detailed characteristics of the generated code.

Description
The advanced options are the same as those found in the HDL Code
Generation > Global Settings pane of the Configuration Parameters dialog
box and the Model Explorer.

See Also
See also “HDL Code Generation Pane: Global Settings” on page 9-22.
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Set Testbench Options
Set options that determine characteristics of generated test bench code.

Description
The test bench options are the same as those found in the HDL Code
Generation > Test Bench pane of the Configuration Parameters dialog
box and the Model Explorer.

See Also
See also “HDL Code Generation Pane: Test Bench” on page 9-78.
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Generate RTL Code and Testbench
Select and initiate generation of RTL code, RTL test bench, and cosimulation
model.

Description
The Generate RTL Code and Testbench task enables choosing what type
of code or model that you want to generate. You can select any combination
of the following:

• Generate RTL code: Generate RTL code in the target language.

• Generate RTL testbench: Generate an RTL test bench in the target
language.

• Generate cosimulation model (requires HDL Verifier): Generate a
cosimulation model. Selecting this check box enables the next option.

• Cosimulation model for use with: Select one of the following options
from the menu:

- Mentor Graphics ModelSim: This option is the default. If your
installation includes HDL Verifier for use with Mentor Graphics
ModelSim, the coder generates and opens a Simulink model that
contains an HDL Cosimulation block for Mentor Graphics ModelSim.

- Cadence Incisive: If your installation includes HDL Verifier for use
with Cadence Incisive, the coder generates and opens a Simulink model
that contains an HDL Cosimulation block for Cadence Incisive.

• Generate validation model: Generate a validation model that highlights
generated delays and other differences between your original model and the
generated cosimulation model. With a validation model, you can observe
the effects of streaming, resource sharing, and delay balancing.

The validation model contains the DUT from the original model and the
DUT from the generated cosimulation model. Using the validation model,
you can verify that the output of the optimized DUT is bit-true to the
results produced by the original DUT.

• Generate FPGA top level wrapper: Generate an HDL code wrapper and
a constraint file that contains pin map information and clock constraints.
When you select a specific target device in the Set Target Device
and Synthesis Tool task, Generate FPGA top level wrapper is
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automatically selected. Generating this wrapper enables generation of the
corresponding programming file for the Generate Programming File
task in the Download to Target folder.

When you select Generate FPGA top level wrapper, the task Annotate
Model with Synthesis Result is not available in the FPGA Synthesis
and Analysis folder. To perform back-annotation analysis, clear the check
box for Generate FPGA top level wrapper.

See Also
See also “Generating a Simulink Model for Cosimulation with an HDL
Simulator”.
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Generate RTL Code and IP Core
Select and initiate generation of RTL code and custom IP core.

Description
In the Generate RTL Code and IP Core task, specify characteristics of
the generated IP core:

• IP core name: Enter the IP core name.

• IP core version: Enter the IP core version number.

The coder appends the version number to the IP core name to generate the
output folder name.

• IP core folder (not editable): Shows the output folder name.

• Generate IP core report: Select this option to generate HTML
documentation for the IP core.

Dependency
This task appears when you set Target workflow to IP Core Generation.

See Also
• “Custom IP Core Generation” on page 22-65

• “Generate a Custom IP Core” on page 22-76

• “Custom IP Core Report” on page 22-68
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FPGA Synthesis and Analysis Overview
Create projects for supported FPGA synthesis tools, perform FPGA synthesis,
mapping, and place/route tasks, and annotate critical paths in the original
model

Description
The tasks in the FPGA Synthesis and Analysis folder enable you to:

• Create FPGA synthesis projects for supported FPGA synthesis tools.

• Launch supported FPGA synthesis tools, using the project files to perform
synthesis, mapping, and place/route tasks.

• Annotate your original model with critical path information obtained from
the synthesis tools.

For a list of supported third-party synthesis tools, see “Third-Party Synthesis
Tools”.

The tasks in the folder are:

• Create Project

• Perform Synthesis and P/R

• Annotate Model with Synthesis Result

See Also
See also “FPGA Synthesis and Analysis” on page 22-28.
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Create Project
Create FPGA synthesis project for supported FPGA synthesis tool.

Description
This task creates a synthesis project for the selected synthesis tool and loads
the project with the HDL code generated for your model.

Enter additional files you want included in your synthesis project. Enter
each file name manually, separated with a semicolon (;), or by using the Add
button.

For example, you can include HDL source files (.vhd or .v), a constraint file
(.ucf or .sdc), or a Tcl script (.tcl) to execute after creating the project.

When the project creation completes, the HDL Workflow Advisor displays a
link to the project in the right pane. Click this link to view the project in the
synthesis tool project window.

For a list of supported third-party synthesis tools, see “Third-Party Synthesis
Tools”.

See Also
See also “Creating a Synthesis Project” on page 22-28.
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Perform Synthesis and P/R Overview
Launch supported FPGA synthesis tools to perform synthesis, mapping, and
place/route tasks.

Description
The tasks in the Perform Synthesis and P/R folder enable you to:

• Perform Logic Synthesis: Launch supported FPGA synthesis tool and
synthesize the generated HDL code.

• Perform Mapping: Launch supported FPGA synthesis tool and perform
mapping and timing analysis.

• Perform Place and Route: Launch supported FPGA synthesis tool and
perform place and route functions.

For a list of supported third-party synthesis tools, see “Third-Party Synthesis
Tools”.

See Also
See also “FPGA Synthesis and Analysis” on page 22-28
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Perform Logic Synthesis
Launch supported FPGA synthesis tool and synthesize the generated HDL
code.

Description
The Perform Logic Synthesis task:

• Launches the synthesis tool in the background.

• Opens the previously generated synthesis project, compiles HDL code,
synthesizes the design, and emits netlists and related files.

• Displays a synthesis log in the Result subpane.

See Also
See also “Performing Synthesis, Mapping, and Place and Route” on page
22-30.
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Perform Mapping
Launches supported FPGA synthesis tool and maps the synthesized logic
design to the target FPGA.

Description
The Perform Mapping task:

• Launches the synthesis tool in the background.

• Runs a mapping process that maps the synthesized logic design to the
target FPGA.

• Emits a circuit description file for use in the place and route phase.

• Also emits pre-routing timing information for use in critical path analysis
and back annotation of your source model.

• Displays a log in the Result subpane.

Enable Skip pre-route timing analysis if your tool does not support early
timing estimation. When this option is enabled, the Annotate Model with
Synthesis Result task sets Critical path source to post-route.

See Also
See also “Performing Synthesis, Mapping, and Place and Route” on page
22-30.
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Perform Place and Route
Launches the synthesis tool in the background and runs a Place and Route
process.

Description
The Perform Place and Route task:

• Launches the synthesis tool in the background.

• Runs a Place and Route process that takes the circuit description produced
by the previous mapping process, and emits a circuit description suitable
for programming an FPGA.

• Also emits post-routing timing information for use in critical path analysis
and back annotation of your source model.

• Displays a log in the Result subpane.

Tips
If you select Skip this task , the HDL Workflow Advisor executes the
workflow, but omits the Perform Place and Route task, marking it Passed.
You might want to select Skip this task if you prefer to do place and route
work manually.

If Perform Place and Route fails, but you want to use the post-mapping
timing results to find critical paths in your model, you can select Ignore
place and route errors and continue to the Annotate Model with
Synthesis Result task.

See Also
See also “Performing Synthesis, Mapping, and Place and Route” on page
22-30.
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Annotate Model with Synthesis Result
Analyzes pre- or post-routing timing information and visually highlights
critical paths in your model

Description
The Annotate Model with Synthesis Result task helps you to identify
critical paths in your model. At your option, the task analyzes pre- or
post-routing timing information produced by the Perform Place and Route
task, and visually highlights one or more critical paths in your model.

If Generate FPGA top level wrapper is selected in the Generate RTL
Code and Testbench task, Annotate Model with Synthesis Result is
not available. To perform back-annotation analysis, clear the check box for
Generate FPGA top level wrapper.

Input Parameters

Critical path source
Select pre-route or post-route.

The pre-route option is unavailable when Skip pre-route timing
analysis is enabled in the Perform Mapping task.

Critical path number
You can annotate up to 3 critical paths. Select the number of paths
you want to annotate.

Show all paths
Show critical paths, including duplicate paths.

Show unique paths
Show only the first instance of a path that is duplicated.

Show delay data
Annotate the cumulative timing delay on each path.

Show ends only
Show the endpoints of each path, but omit the connecting signal lines.
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Results and Recommended Actions
When the Annotate Model with Synthesis Result task runs to completion,
the coder displays the DUT with critical path information highlighted.

See Also
“Annotating Your Model with Critical Path Information” on page 22-35
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Download to Target Overview
The Download to Target folder supports the following tasks:

• Generate Programming File: Generate an FPGA programming file.

• Program Target Device: Download generated programming file to the
target development board.

• Generate xPC Target Interface (for Speedgoat target devices only):
Generate a model that contains an xPC Target interface subsystem.

See Also
For summary information on each Download to Target task, select the task
icon and then click the HDL Workflow Advisor Help button.
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Generate Programming File
The Generate Programming File task generates an FPGA programming
file that is compatible with the selected target device.
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Program Target Device
The Program Target Device task downloads the generated FPGA
programming file to the selected target device.

Before executing the Program Target Device task, make sure that your
host PC is properly connected to the target development board via the
required programming cable.
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Generate xPC Target Interface
The Generate xPC Target Interface task generates a model containing an
interface subsystem that you can plug in to an xPC Target model.

The naming convention for the generated model is:

gm_fpgamodelname_xpc.mdl

where fpgamodelname is the name of the original model.
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Save and Restore HDL Workflow Advisor State
You can save the current settings of the HDL Workflow Advisor to a named
restore point. At a later time, you can restore the same settings by loading the
restore point data into the HDL Workflow Advisor.

See Also
For detailed information on how to create, save, and load a restore point, see
“Save and Restore HDL Workflow Advisor State” on page 22-10.

FPGA-in-the-Loop Implementation
Set FIL options and run FIL processing.

Set FIL Options
Set board IP and MAC addresses and select additional files, if required.

Board IP Address
Use this option for setting the board’s IP address if it is not the default IP
address (192.168.0.2).

Board MAC Address
Under most circumstances, you do not need to change the Board MAC address.
You will need to do so if you connect more than one FPGA development board
to a single computer (for which you must have a separate NIC for each board).
You must change the Board MAC address for additional boards so that each
address is unique.

Additional Source Files
Select additional source files for the HDL design that is to be verified on the
FPGA board, if required. HDL Workflow Advisor will attempt to identify the
file type; change the file type in the File Type column if it is incorrect.

Build FPGA-in-the-Loop
During the build process, the following actions occur:
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• FPGA-in-the-Loop generates a FIL block named after the top-level module
and places it in a new model.

• After new model generation, FIL opens a command window. In this
window, the FPGA design software performs synthesis, fit, place-and-route,
timing analysis, and FPGA programming file generation. When the process
completes, a message in the command window prompts you to close the
window.

• FPGA-in-the-Loop builds a testbench model around the generated FIL
block.

Check USRP® Compatibility
The model must have 2 input ports and 2 output ports of signed 16-bit signals.

Verify with HDL Cosimulation
Run this step to verify the generated HDL using cosimulation between the
HDL Simulator and the Simulink test bench.

Generate FPGA Implementation
This step initiates FPGA programming file creation. For Input Parameters,
enter the path to the Ettus Research™ USRP® FPGA files you previously
downloaded. If you have not yet downloaded these files, see the Support
Package for USRP® Radio documentation.

When this step completes, see the instructions for downloading the
programming file to the FPGA and running the simulation in the Support
Package for USRP® Radio documentation for FPGA Targeting.

Check SDR Compatibility
The DUT must adhere to certain signal interface requirements. During Check
SDR Compatibility, the following interface checks are performed (Inputs and
Outputs go through the same checks).

• Must include single complex signal, two scalar signals, or single vectored
signal of size 2

• Must have a bitwidth of 16
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• Must be signed

• Must be single rate

• If have vectored ports must use Scalarize Vectors option

• If have multiple rates, must use Single clock

• Must use synchronous reset

• Must use active-high reset

• Must use a user overclocking factor of 1

All error checks are done for a given task run and reported in a table. This
allows a single iteration to fix all errors.

SDR FPGA Implementation
The SDR FPGA integrates customer logic as generated in previous steps as
well as SDR-specific code to provide data and control paths between an RF
board and the host.

This step consists of the following tasks:

• Set SDR Options: Choose customization options

• Build SDR: Generate FPGA programming file for an SDR target.

Set SDR Options
Choose customization options for the completion of the SDR FPGA
implementation.

SDR FPGA Component Options

• RF board for target

Choose one of the following:

- Epic Bitshark FMC-1Rx RevB

- Epic Bitshark FMC-1Rx RevC

- Analog Devices AD FMCOMMS1 ABZ RevB
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• Folder with vendor HDL source code

Specify the folder that contains the RF interface HDL downloaded from the
vendor support site. Use Browse to navigate to the correct folder.

• User logic synthesis frequency

Specify the maximum frequency at which you want to run your design

• User logic data path

Select either the Receiver data path or the Transmitter data path.

- If you select Receiver data path, you can optionally choose to Include
receiver decimation filter. When you select this option, the SDR
FPGA component includes the configurable decimation filters after the
ADC. The default value of this checkbox is selected.

- If you select Transmitter data path, you can optionally choose to
Include transmitter interpolation filter. The default value of this
checkbox is selected.

• User logic data path

Select either the Receiver data path or the Transmitter data path.

- If you selected Receiver data path, you can optionally choose to
Include receiver decimation filter. The default value of this
checkbox is selected.

- If you selected Transmitter data path, you can optionally choose to
Include transmitter interpolation filter. The default value of this
checkbox is selected.

Radio IP Addresses

• Board IP address

Set the board’s IP address in this field if it is not the default IP address
(192.168.10.1).

• Board MAC address

Under most circumstances, you do not need to change the Board MAC
address. However, you need to do so if you connect more than one FPGA
development board to a single computer (for which you must have a
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separate NIC for each board). You must change the Board MAC address for
additional boards so that each address is unique.

Additional Source and Project Files for the HDL Design
Specify files you want included in the ISE project. You should include only file
types supported by ISE. If an included file does not exist, the HDL Workflow
Advisor cannot create the ISE project.

• File: Name of file added to design (with Add).

• File Type: File type. The software will attempt to determine the file
type automatically, but you may override the selection. Options are VHDL,
Verilog, EDIF netlist, VQM netlist, QSF file, Constraints, and
Others.

• Add: Add a new file to the list.

• Remove: Removes the currently selected file from the list.

• Up: Moves the currently selected file up the list.

• Down: Moves the currently selected file down the list.

Show full paths to source files (checkbox) triggers a full path display.
Leaving this box unchecked displays only the file name.

Build SDR
The HDL Workflow Advisor creates a new Xilinx ISE project and adds the
following:

• All the necessary files from the FPGA repository

• The generated HDL files for the selected subsystem and algorithm

If no errors are found during FPGA project generation and syntax checking,
the FPGA programming file generation process starts. You can view this
process in an external command shell and monitor its progress. When the
process is finished, a message in the command window prompts you to close
the window.
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Embedded System Integration
Tasks in this folder integrate your generated HDL IP core with the embedded
processor.

Create Project
Create project for embedded system tool.

Embedded System Tool
Input Parameter

Description

Embedded system tool Embedded design tool.

Reference design Predefined EDK project into which the coder
inserts your generated IP core files.

Reference design path If you are using the downloaded Xilinx
Targeted Reference Design (TRD) instead of
the default Reference Design, enter the path
to the downloaded TRD.

Project folder Folder where your generated project files are
saved.

Generate Software Interface Model
Generate a software interface model with IP core driver blocks for embedded
C code generation.

After you generate the software interface model, you can generate C code
from it using Embedded Coder.

Skip this task: Select this option if you want to provide your own embedded
C code, or do not have an Embedded Coder license.

Add IP core device driver to Linux kernel: Select to insert the IP core
node into the Linux device tree on the SD card on your Zynq board, reboot
Linux, and add the IP core driver as a Linux loadable kernel module. To
use this option, your board must be connected. Back up your SD card before
you run this task.
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Build FPGA Bitstream
Generate bitstream for embedded system.

Run build process externally: Enable this option to run the build process
in parallel with MATLAB. If this option is disabled, you cannot use MATLAB
until the build is finished.

Program Target Device
Program the connected target device.

Click Run to program your connected target device.
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READ THIS FIRST: Control File Compatibility and Conversion
Issues

In this section...

“Conversion From Use of Control Files Recommended” on page 26-2

“Detaching Existing Models From Control Files” on page 26-2

“Applying Control File Settings” on page 26-3

“Backwards Compatibility” on page 26-3

Conversion From Use of Control Files Recommended
As of release R2010b, the coder does not support the attachment of a control
file to a new model. Instead, the coder now saves nondefault HDL-related
model settings, block implementation selections and implementation
parameter settings to the model itself. This eliminates the need to maintain a
separate control file. Because the coder saves only the nondefault parameter
settings, the loading and saving of models is more efficient. The recommended
practice is to discontinue use of control files and convert existing models. This
simple process is described in the next section.

Detaching Existing Models From Control Files
If you have existing models with attached control files, you should convert
them to the current format and remove control file linkage. To convert a
model that has an attached control file:

1 Open the model. When the coder opens a model that has an attached
control file, it loads and sets parameters as specified in the control file, and
clears the control file linkage from the model. During this process, the
coder displays the following messages:

Found HDL control file attached to the model 'test_model' ...
Loading control file 'test_model_control' ...
Successfully loaded control file 'test_model_control.m' ...
Please consider saving the model to make changes permanent ...
Detaching the HDL control file from the model...
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2 Save the model. The model now preserves nondefault settings. The next
time you open the model, the coder will not display control file status
messages.

Note that although the model is now detached from the control file, the control
file itself is preserved so that you can apply it to other models if you wish.

Applying Control File Settings
The coder provides the hdlapplycontrolfile utility as a quick way to
transfer HDL settings from existing models that have attached control files to
other models. See hdlapplycontrolfile for further information.

Backwards Compatibility
For backward compatibility, the coder continues to support models that have
attached control files.
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Overview of Control Files

In this section...

“What Is a Control File?” on page 26-4

“Selectable Block Implementations and Implementation Parameters” on
page 26-5

“Implementation Mappings” on page 26-5

What Is a Control File?
Code generation control files (referred to in this document as control files) let
you

• Save your model’s HDL code generation options in a persistent form.

• Extend the HDL code generation process and direct its details.

You attach a control file to your model using either the makehdl command or
the Configuration Parameters dialog box. You do not need to know internal
details of the code generation process to use a control file.

Control files support the following statement types:

• Selection/action statements provide a general framework for the
application of different types of transformations to selected model
components. Selection/action statements select a group of blocks within
your model, and specify an action to be executed when code is generated
for each block in the selected group.

Selection criteria include block type and location within the model. For
example, you might select all built-in Gain blocks at or below the level of a
certain subsystem within your model.

A typical action applied to such a group of blocks is to direct the code
generator to execute a specific block implementation method when
generating HDL code for the selected blocks. For example, for Gain blocks,
you might choose a method that generates code that is optimized for speed
or chip area.

• Property setting statements let you
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- Select the model or subsystem from which code is to be generated.

- Set the values of code generation properties to be passed to the code
generator. The properties and syntax are the same as those used for the
makehdl command.

- Set up default or template HDL code generation settings for your
organization.

Selectable Block Implementations and
Implementation Parameters
Selection/action statements provide a general framework that lets you define
how the coder acts upon selected model components. The current release
supports one such action: execution of block implementation methods.

Block implementation methods are code generator components that emit HDL
code for the blocks in a model. This document refers to block implementation
methods as block implementations or simply implementations.

The coder provides at least one block implementation for every supported
block . This is called the default implementation. In addition, the coder
provides selectable alternate block implementations for certain block types.
Each implementation is optimized for different characteristics, such as speed
or chip area. For example, you can choose Gain block implementations that
use canonic signed digit (CSD) techniques (reducing area), or use a default
implementation that retains multipliers.

For many block implementations, you can set implementation parameters that
provide a further level of control over how code is generated for a particular
implementation. For example, most blocks support the 'OutputPipeline'
implementation parameter. This parameter lets you specify the generation of
output pipeline stages for selected blocks by passing in the required pipeline
depth as the parameter value.

Implementation Mappings
Control files let you specify one or more implementation mappings that control
how HDL code is to be generated for a specified group of blocks within the
model. An implementation mapping is an association between a selected block
or set of blocks within the model and a block implementation.
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To select the set of blocks to be mapped to a block implementation, you specify

• A modelscope: a Simulink block path (which could incorporate an entire
model or sublevel of the model, or a specific subsystem or block)

• A blocktype: a Simulink block type that corresponds to the selected block
implementation

During code generation, each defined modelscope is searched for instances of
the associated blocktype. For each such block instance encountered, the code
generator uses the selected block implementation.
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Structure of a Control File
The required elements for a code generation control file are as follows:

• A control file implements a single function, which is invoked during the
code generation process.

The function must instantiate a code generation control object, set its
properties, and return the object to the code generator.

Setting up a code generation control object requires the use of a small
number of methods, as described in “Code Generation Control Objects and
Methods” on page 26-8. You do not need to know internal details of the code
generation control object or the class to which it belongs.

You construct the object using the hdlnewcontrol function. The argument
to hdlnewcontrol is the name of the control file itself. Use the mfilename
function to pass in the file name, as shown in the following example.

function c = dct8config
c = hdlnewcontrol(mfilename);

% Set target language for Verilog.
c.set('TargetLanguage','Verilog');

% Set top-level subsystem from which code is generated.
c.generateHDLFor('dct8_fixed/OneD_DCT8');

• Following the constructor call, your code will invoke methods of the
code generation control object. The previous example calls the set and
generateHDLFormethods. These and other public methods of the object are
discussed in “Code Generation Control Objects and Methods” on page 26-8.

• Your control file must be attached to your model before code generation,
as described in “Using Control Files in the Code Generation Process” on
page 26-16. The interface between the code generator and your attached
control file is automatic.

• A control file must be located in either the current working folder, or a
folder that is in the MATLAB path.

However, your control files should not be located within the MATLAB tree
because they could be overwritten by subsequent installations.
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Code Generation Control Objects and Methods

In this section...

“Overview” on page 26-8

“hdlnewcontrol” on page 26-8

“forEach” on page 26-8

“forAll” on page 26-13

“set” on page 26-13

“generateHDLFor” on page 26-14

“hdlnewcontrolfile” on page 26-15

Overview
Code generation control objects are instances of the class
slhdlcoder.ConfigurationContainer. This section describes the public
methods of that class that you can use in your control files. Other methods of
this class are for MathWorks internal development use only. The methods are
described in the following sections:

hdlnewcontrol
The hdlnewcontrol function constructs a code generation control object. The
syntax is

object = hdlnewcontrol(mfilename);

The argument to hdlnewcontrol is the name of the control file itself. Use the
mfilename function to pass in the file name string.

forEach
This method establishes an implementation mapping between an HDL block
implementation and a selected block or set of blocks within the model. The
syntax is

object.forEach({'modelscopes'}, ...
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'blocktype', {'block_parms'}, ...
'implementation', {'implementation_parms'})

The forEach method selects a set of blocks (modelscopes) that is searched,
during code generation, for instances of a specified type of block (blocktype).
Code generation for each block instance encountered uses the HDL block
implementation specified by the implementation parameter.

Note You can use the hdlnewforeach function to generate forEach method
calls for insertion into your control files. See “Generating Selection/Action
Statements with the hdlnewforeach Function” on page 26-18 for more
information.

The following table summarizes the arguments to the forEach method.

Argument Type Description

block_parms Cell
array
of
strings

Reserved for future use. Pass in an empty cell array ({})
as a placeholder.

blocktype String Block specification that identifies the type of block that
is to be mapped to the HDL block implementation. Block
specification syntax is the same as that used in the
add-block command. For built-in blocks, the blocktype
is of the form

'built-in/blockname'

For other blocks, blocktype must include the full path to
the library containing the block, for example:

'dsparch4/Digital Filter'
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Argument Type Description

implementation String The implementation string represents an HDL block
implementation to be used in code generation for blocks that
meet the modelscope and blocktype search criteria. Every
block has at least one implementation. “Blocks with Multiple
Implementations” on page 11-16 provides guidelines for
specifying implementations, and lists supported blocks and
their implementations.

implementation_parms Cell
array
of p/v
pairs

Cell array of property/value pairs that set code generation
parameters for the block implementation specified by
the implementation argument. Specify parameters
as:'Property', value
where 'Property' is the name of the property and value is
the value applied to the property. If the implementation does
not have parameters, or you want to use default parameters,
pass in an empty cell array ({}) .

“Block Implementation Parameters” on page 11-50 describes
the syntax of each parameter, and describes how the
parameter affects generated code.

“Blocks with Multiple Implementations” on page 11-16
lists supported blocks and their implementations and
parameters.

You can use the hdlnewforeach function to obtain the
parameter names for selected block(s) in a model. See
“Specifying Block Implementations and Parameters in the
Control File” on page 26-17.
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Argument Type Description

modelscopes String
or cell
array
of
strings

Strings defining one or more Simulink paths:

{'path1' 'path2'...'pathN'}

Each path defines a modelscope: a set of blocks that
participate in an implementation mapping. The set of blocks
in a modelscope could include the entire model, blocks at a
specified level of the model, or a specific block or subsystem.
A path terminating in a wildcard ('*') includes blocks at or
below the model level specified by the path.
You can use the period (.) to represent the root-level model
at the top of a modelscope, instead of explicitly coding the
model name. For example: './subsyslevel/block'. See
also “Representation of the Root Model in modelscopes”
on page 26-11 and “Resolution of modelscopes” on page
26-12.Syntax for modelscope paths is

• 'model/*': all blocks in the model

• 'model/subsyslevel/block': a specific block within a
specific level of the model

• 'model/subsyslevel/subsystem': a specific subsystem
block within a specific level of the model

• 'model/subsyslevel/*': any block within a specific
model level

Representation of the Root Model in modelscopes
You can represent the root-level model at the top of a modelscope as:

• The full model name, as in the following listing:

cfg.forEach( 'aModel/Subsystem/MinMax', ...
'built-in/MinMax', {}, ...
'default');

If you explicitly code the model name in a modelscope, and then save the
model under a different name, the control file becomes invalid because it
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references the previous model name. It is then required that you edit the
control file and change all such modelscopes to reference the new model.

• The period (.) character, representing the current model as an abstraction,
as in the following listing:

cfg.forEach( './Subsystem/MinMax', ...
'built-in/MinMax', {}, ...
'Cascade');

If you represent the model in this way, and then save the model under a
different name, the control file does not require a change. Using the period
to represent the root-level model makes the modelscope independent of the
model name, and therefore more portable.

When you save HDL code generation settings to a control file, the period is
used to represent the root-level model.

Resolution of modelscopes
A possible conflict exists in the forEach specifications in the following
example:

% 1. Use default (multipliers) Gain block implementation

% for one specific Gain block within OneD_DCT8 subsystem

c.forEach('./OneD_DCT8/Gain14',...

'built-in/Gain', {},...

'default', {});

% 2. Use factored CSD Gain optimization

% for all Gain blocks at or below level of OneD_DCT8 subsystem.

c.forEach('./OneD_DCT8/*',...

'built-in/Gain', {},...

'default', {'ConstMultiplierOptimization','FCSD'});

The first forEach call defines an implementation mapping for a specific
block within the subsystem OneD_DCT8. The second forEach call specifies a
non-default implementation parameter ('ConstMultiplierOptimization')
for all blocks within or below the subsystem OneD_DCT8.
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The coder resolves such ambiguities by giving higher priority to the more
specific modelscope. In the example, the first modelscope is the more specific.

Five levels of modelscope priority from most specific (1) to least specific (5)
are defined:

1 A/B/C/block

2 A/B/C/*

3 A/B/*

4 *

5 Unspecified. Use the default implementation.

forAll
This method is a shorthand form of forEach. Only one modelscope path is
specified. The modelscope argument is specified as a string (not a cell array)
and it is implicitly terminated with'/*'. The syntax is

object.forAll('modelscope', ...
'blocktype', {'block_parms'}, ...
'implementation', {'implementation_parms'})

Other arguments are the same as those described for “forEach” on page 26-8.

set
The set method sets one or more code generation properties. The syntax is

object.set('PropertyName', PropertyValue,...)

The argument list specifies one or more code generation options as
property/value pairs. You can set all the code generation properties except the
HDLControlFiles property.
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Note If you specify the same property in both your control file and your
makehdl command, the property will be set to the value specified in the
control file.

Likewise, when generating code via the GUI, if you specify the same property
in both your control file and the HDL Coder options panes, the property will
be set to the value specified in the control file.

generateHDLFor
This method selects the model or subsystem from which code is to be
generated. The syntax is

object.generateHDLFor('simulinkpath')

The argument is a string specifying the full path to the model or subsystem
from which code is to be generated.

To make your control files more portable, you can represent the root-level
model in the path as an abstraction, as in the following example:

function c = newforeachexamp
c = hdlnewcontrol(mfilename);

% Set top-level subsystem from which code is generated.
c.generateHDLFor('./symmetric_fir');
...

The above generateHDLFor call is valid for any model containing a subsystem
named symmetric_fir at the root level.

Use of this method is optional. You can specify the same parameter in the
Generate HDL for menu in the HDL Coder pane of the Configuration
Parameters dialog box, or in a makehdl command.
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hdlnewcontrolfile
The coder provides the hdlnewcontrolfile utility to help you construct
code generation control files. Given a selection of one or more blocks
from your model, hdlnewcontrolfile generates a control file containing
forEach statements and comments providing information about supported
implementations and parameters, for the selected blocks. The generated
control file is automatically opened in the MATLAB editor for further
customization. See the hdlnewcontrolfile function reference page for details.
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Using Control Files in the Code Generation Process

In this section...

“Where to Locate Your Control Files” on page 26-16

“Making Your Control Files More Portable” on page 26-16

Where to Locate Your Control Files
Before you create a control file or use a control file in code generation, be sure
to observe the following requirements for the location of control files:

• A control file must be stored in a folder that is in the MATLAB path, or
the current working folder.

• Do not locate a control file within the MATLAB tree, because it could be
overwritten by subsequent MATLAB installations.

Making Your Control Files More Portable
It can be advantageous to code your control files so that they are independent
of a particular model name. To do this, use the period (.) to represent the
root-level model at the beginning of all modelscope paths. For example:

cfg.forEach( './Subsystem/MinMax', ...
'built-in/MinMax', {}, ...
'Cascade');

If you code modelscopes in this way, all modelscopes are interpreted as
references to the current model, rather than as references to an explicitly
named model. Therefore, you can save your model under a different name,
and references to the root-level model will be valid.
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Specifying Block Implementations and Parameters in the
Control File

In this section...

“Overview” on page 26-17

“Generating Selection/Action Statements with the hdlnewforeach Function”
on page 26-18

Overview
The coder provides a default HDL block implementation for supported
blocks. In addition, the coder provides selectable alternate HDL block
implementations for several block types. Using selection/action statements
(forEach or forAll method calls) in a control file, you can specify the block
implementation to be applied to all blocks of a given type (within a specific
modelscope) during code generation. For many implementations, you can
also pass in implementation parameters that provide additional control over
code generation details.

You select HDL block implementations by specifying the implementation
name as a string. “Blocks Supported for HDL Code Generation” on page
11-3 summarizes the supported blocks, their implementation names,
and implementation parameters. Pass in the implementation name and
implementation parameters (if any) to the implementation argument
of a forEach or forAll call. The following example specifies the Tree
implementation for all Sum blocks in a model, with 2 output pipeline stages.

config.forEach('*',...
'built-in/Sum', {},...
'Tree', {'OutputPipeline', 2});

Given the implementation name, the coder calls the corresponding code
generation method. You do not need to know internal details of the
implementation classes.
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Generating Selection/Action Statements with the
hdlnewforeach Function
Determining the block path, type, implementation specification, and
implementation parameters for a large number of blocks in a model can be
time-consuming. Use the hdlnewforeach function to create selection/action
statements in your control files. Given a selection of one or more blocks from
your model, hdlnewforeach returns the following for each selected block, as
string data in the MATLAB workspace:

• A forEach call coded with the modelscope , blocktype, and default
implementation arguments for the block

• (Optional) A cell array of strings enumerating the available
implementations for the block.

• (Optional) A cell array of strings enumerating the names of implementation
parameters corresponding to the block implementations. hdlnewforeach
does not list data types and other details of block implementation
parameters. These details are described in “Blocks with Multiple
Implementations” on page 11-16.

Having generated this information, you can copy and paste the strings into
your control file.

hdlnewforeach Example
This example uses hdlnewforeach to construct a forEach call that specifies
generation of two output pipeline stages after the output of a selected Sum
block within the sfir_fixed example model. To create the control file:

1 In the MATLAB Command Window, select File > New > Blank M-File.
The MATLAB Editor opens an empty file.

2 Create a skeletal control file by entering the following code into the
MATLAB Editor window:

function c = newforeachexamp

c = hdlnewcontrol(mfilename);

% Set top-level subsystem from which code is generated.

c.generateHDLFor('sfir_fixed/symmetric_fir');
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% INSERT FOREACH CALL BELOW THIS LINE.

3 Save the file as newforeachexamp.m.

4 Open the sfir_fixed example model.

5 Close the checkhdl report window and activate the sfir_fixed model
window.

6 In the symmetric_fir subsystem window, select the Add4 block, as shown
in the following figure.

Now you are ready to generate a forEach call for the selected block:

1 Type the following command at the MATLAB prompt.

[cmd,impl,parms] = hdlnewforeach(gcb)

2 The command returns the following results:

c.forEach('./symmetric_fir/Add4',...
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'built-in/Sum', {},...

'default', {}); % Default architecture is 'Linear'

impl =

{3x1 cell}

parms =

{1x2 cell} {1x2 cell} {1x2 cell}

The first return value, cmd, contains the generated forEach call. The
forEach call specifies the default implementation for the Sum block,
specified as 'default'. Also by default, no parameters are passed in for
this implementation.

3 The second return value, impl, is a cell array containing three strings
representing the available implementations for the Sum block. The
following example lists the contents of the impl array:

impl{1}

ans =

'Linear'

'Cascade'

'Tree'

See the table for information about these implementations.

4 The third return value, parms, is a cell array containing three strings
that represent the available implementations parameters corresponding to
the previously listed Sum block implementations. The following example
lists the contents of the parms array:

parms{1:3}
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ans =

'InputPipeline' 'OutputPipeline'

ans =

'InputPipeline' 'OutputPipeline'

ans =

'InputPipeline' 'OutputPipeline'

This listing shows that each of the Sum block implementations has two
parameters, 'InputPipeline' and 'OutputPipeline'. This indicates that
parameter/value pairs of the form {'OutputPipeline',val} can be passed
in with any of the Sum block implementations.

hdlnewforeach does not provide information about the data type, valid
range, or other constraints on val. Some implementation parameters take
numeric values, while others take strings. See “Block Implementation
Parameters” on page 11-50 for details on implementation parameters.

5 Copy the three lines of forEach code from the MATLAB Command Window
and paste them into the end of your newforeachexamp.m file:

% INSERT FOREACH CALL BELOW THIS LINE.

c.forEach('./symmetric_fir/Add4',...

'built-in/Sum', {},...

'default', {}); % Default architecture is 'Linear'

6 In this example, you will specify the default Sum block implementation for
the Add4 block, but with generation of two output pipeline stages before the
final output. To do this, pass in the 'OutputPipeline' parameter with a
value of 2. Modify the final line of the forEach call in your control file:

% INSERT FOREACH CALL BELOW THIS LINE.

c.forEach('./symmetric_fir/Add4',...

'built-in/Sum', {},...

'default', {'OutputPipeline', 2}); % Default architecture is 'Linear'
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7 Save the control file.

8 The following code shows the complete control file:

function c = newforeachexamp

c = hdlnewcontrol(mfilename);

% Set top-level subsystem from which code is generated.

c.generateHDLFor('sfir_fixed/symmetric_fir');

% INSERT FOREACH CALLS HERE.

c.forEach('sfir_fixed/symmetric_fir/Add4',...

c.forEach('./symmetric_fir/Add4',...

'built-in/Sum', {},...

'default', {'OutputPipeline', 2}); % Default architecture is 'Linear'

Note For convenience, hdlnewforeach supports a more abbreviated syntax
than that used in the previous example. See the hdlnewforeach reference
page.
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Generating Black Box Control Statements Using
hdlnewblackbox

The hdlnewblackbox function provides a simple way to create the control file
statements that are required to generate black box interfaces for one or more
subsystems. hdlnewblackbox is similar to hdlnewforeach ).

Given a selection of one or more subsystems from your model, hdlnewblackbox
returns the following as string data in the MATLAB workspace for each
selected subsystem:

• A forEach call coded with the modelscope, blocktype, and default
implementation class (SubsystemBlackBoxHDLInstantiation) arguments
for the block.

• (Optional) A cell array of strings enumerating the available
implementations classes for the subsystem.

• (Optional) A cell array of cell arrays of strings enumerating the names
of implementation parameters corresponding to the implementation
classes. hdlnewblackbox does not list data types and other details of
implementation parameters.

See hdlnewblackbox for the full syntax description of the function.

As an example, suppose that you want to generate black box control file
statements for the subsystem gencode from the subsystst model. Using
hdlnewblackbox, you can do this as follows:

1 Activate the subsystst/top subsystem window.

2 Select the subsystems for which you want to create control statements. In
the following figure, gencode is selected.
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3 Deselect the subsystst/top subsystem.

4 Type the following command at the MATLAB prompt:

[cmd,impl,parms] = hdlnewblackbox

5 The command returns the following results:

cmd =

c.forEach('subsystst/top/gencode',...

'built-in/SubSystem', {},...

'BlackBox', {});

impl =

{4x1 cell}

parms =

{} {1x11 cell} {1x12 cell} {1x11 cell}

The first return value, cmd, contains the generated forEach call. The
forEach call specifies the default back box implementation for the
subsystem blocks: BlackBox. Also by default, no parameters are passed
in for this implementation.
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6 The second return value, impl, is a cell array containing three strings
listing available implementations for the Subsystem block. The following
example lists the contents of the impl array:

>> impl{1}

ans =

'hdldefaults.NoHDLEmission'

'hdldefaults.SubsystemBlackBoxHDLInstantiation'

'hdldefaults.XilinxBlackBoxHDLInstantiation'

'hdldefaults.AlteraDSPBuilderBlackBox'

7 The third return value, parms, is a cell array containing strings that
represent the available implementations parameters corresponding to
the previously listed Subsystem block implementations. The parameters
of interest in this case are those available for BlackBox. These are
enumerated in parms{2}, as shown in the following listing:

parms{1}

ans =

Columns 1 through 4

'ClockInputPort' [1x20 char] 'ResetInputPort' 'AddClockPort'

Columns 5 through 9

'AddClockEnablePort' 'AddResetPort' [1x20 char] [1x20 char] 'EntityName'

Columns 10 through 11

'InputPipeline' 'OutputPipeline'

Implementation parameters for subsystems and other black box interface
classes are described in “Customize the Generated Interface” on page 18-63.

8 Having generated this information, you can now copy and paste the strings
into a control file.
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Support Packages and Support Package Installer

What Is a Support Package?
A support package is an add-on that enables you to use a MathWorks product
with specific third-party hardware and software.

Support packages can include:

• Simulink block libraries

• MATLAB functions, classes, and methods

• Firmware updates for the third-party hardware

• Automatic installation of third-party software

• Examples and tutorials

A support package file has a *.zip extension. This type of file contains
MATLAB files, MEX files, and other supporting files required to install the
support package. Use Support Package Installer to install these support
package files.

A support package installation file has a *.mlpkginstall extension. You
can double click this type of file to start Support Package Installer, which
preselects a specific support package for installation. You can download these
files from MATLAB Central File Exchange and use them to share support
packages with others.

What Is Support Package Installer?
Support Package Installer is a wizard that guides you through the process of
installing support packages.

You can use Support Package Installer to:

• Display a list of available, installable, installed, or updatable support
packages

• Install, update, download, or uninstall a support package.

• Update the firmware on specific third-party hardware.
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• Provide your MathWorks software with information about required
third-party software.

If third-party software is included, Support Package Installer displays a list of
the software and licenses for you to review before continuing.

You can start Support Package Installer in one of the following ways:

• On the MATLAB toolstrip, click Add-Ons > Get Hardware Support
Packages.

• In the MATLAB Command Window, enter supportPackageInstaller.

• Double-click a support package installation file (*.mlpkginstall).
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Install This Support Package on Other Computers
You can download a support package to one computer, and then install it on
other computers. You can use this approach to:

• Save time when installing support packages on multiple computers.

• Install support packages on computers that are not connected to the
Internet.

Before starting, select a computer to use for downloading. This computer must
have the same base product license and platform as the computers upon which
you are installing the support package. For example, suppose you want to
install a Simulink support package on a group of computers that are running
64-bit Windows. To do so, you must first download the support package using
a computer that has a Simulink license and is running 64-bit Windows.

Download the support package to one computer:

1 In the MATLAB Command Window, enter supportPackageInstaller.

2 In Support Package Installer, on the Select an action screen, choose
Install from Internet or Download from Internet. Click Next.

3 On the following screen, select only one support package.

Notice the path of the Download folder. For example,
C:\MATLAB\SupportPackages\R2013b\downloads.

4 Using the file manager on your computer, open the downloads folder and
observe its contents.

5 Using Support Package Installer, complete the installation or download
process.

This process creates a folder within the Download folder. In some cases,
if the support package requires another support package, this process
creates an additional folder.

Prepare and share the support package files:
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1 In the file manager, check how many folders were created during the
installation or download process.

2 If more than one folder was created, combine the contents of the folders
into the folder named after the support package.

For example,
C:\MATLAB\SupportPackages\R2013b\downloads\support_package_name.

3 Make that folder available to other computers by sharing it on the network,
or copying it to portable media, such as a USB flash drive.

Note Some support packages require that you install third-party software
separately before completing the support package installation process. In
that case, also make the third-party software available for installation on
the other computers.

Install the support package on the other computers:

1 Run Support Package Installer on the other computer or computers.

2 On the Install or update support package screen, select the Folder
option.

3 Use Browse to specify the location of the support package folder on the
network or portable media.

4 Complete the instructions provided by Support Package Installer.

27-5



27 Support Packages

Open Examples for This Support Package

In this section...

“Using the Help Browser” on page 27-6

“Using the Block Library” on page 27-8

“Using Support Package Installer” on page 27-9

Using the Help Browser
You can open support package examples from the Help browser:

1 Enter doc in the MATLAB Command Window.

2 In the Help browser, click Supplemental Software in the lower left
corner of the Home page.
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3 In Supplemental Software, double-click Examples.
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4 Select the examples for your support package.

Note For other types of examples, open the Help browser and search for your
product name followed by “examples”.

Using the Block Library
To open support package from the support package block library:

1 Enter simulink in the MATLAB Command Window.

2 In Simulink Library Browser, open the support package block library.

3 In the block library, double-click the Examples block.
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Using Support Package Installer
Support Package Installer (supportPackageInstaller) automatically
displays the support package examples when you complete the process of
installing and setting up a support package.
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On the last screen in Support Package Installer, leave Show support
package examples enabled and click Finish.
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